
Bachelor’s Thesis Nr. 98b

Systems Group, Department of Computer Science, ETH Zurich

Applying the Multikernel Approach to a Heterogeneous OMAP4460 SoC

by

Claudio Föllmi

Supervised by

Timothy Roscoe
Stefan Kaestle

March 2013 – September 2013

Abstract

Modern computers increasingly resemble networks, with processor and mem-
ory layouts becoming less symmetrical. Traditional operating systems were
built on the abstraction of a single program running on identical cores with
identical views of memory. A multikernel on the other hand does not depend
on such assumptions, making it suitable to run on heterogeneous architec-
tures.

In this thesis, we apply the multikernel approach to the OMAP4460 SoC.
We ported the Barrelfish operating system to the Cortex-M3 microcontroller
and ran it together with the existing Cortex-A9 port. We present the chal-
lenges with porting a general purpose operating system to a microcontroller
and discuss our design decisions.

1

Contents

1 Introduction 3

2 Related Work 4

3 Background 4
3.1 OMAP4460 SoC . 4
3.2 Cortex-M3 subsystem . 5

3.2.1 Memory model . 5
3.3 ARMv7-M Profile . 7

3.3.1 Exception model . 8
3.3.2 Synchronisation . 9

3.4 Barrelfish . 9
3.4.1 Devices . 10
3.4.2 Message Passing . 10
3.4.3 Dispatchers . 10
3.4.4 Capabilities . 10
3.4.5 Services . 10
3.4.6 Hake . 10

4 Design and Implementation 11
4.1 General design decisions . 11
4.2 Memory Management . 11
4.3 Memory Protection . 12

4.3.1 Access Policies . 12
4.4 CP15 . 13
4.5 Synchronisation . 14

4.5.1 Kernel Synchronisation 14
4.5.2 Application Synchronisation 14

4.6 Exception Handling . 15
4.7 Interrupt Controller . 15
4.8 Entering Handler Mode at Startup 15
4.9 Saving and Restoring Context . 16

4.9.1 Basic Context Flow . 16
4.9.2 Special Cases . 18

4.10 Hake Target ARMv7-M . 19
4.11 Creating a Bootable Image . 19
4.12 Starting a Cortex-M3 Core . 19
4.13 Debugging . 20

5 Evaluation 20

6 Conclusion 21

7 Future work 22

2

1 Introduction

Modern hardware is becoming more and more heterogeneous, and can be ex-
pected to become even more so in the future. Not just because of the benefits
of having different processors to choose from, but also because many special-
ized devices like GPUs and network cards increasingly resemble specialized
processors. Advanced microcontrollers already provide much of the function-
ality of a regular CPU. Microcontrollers included in a system in order to drive
other devices may be repurposed and treated as a processor, if the operating
system can cope with heterogeneity.

In this thesis, we will look at the Cortex-M3 subsystem on the OMAP4460
system on a chip. We discuss how a general purpose operating system can
be made to run on that microcontroller, with the example of our port of the
Barrelfish operating system to the Cortex-M3.

In a classically designed system, all processor cores are identical and con-
nected to each other in the same way. A heterogeneous system on the other
hand contains cores that are noticeably different from each other [1]. This can
manifest in many forms:

• They may run at different clock speeds.

• They may support different instruction set extensions.

• They may have access to separate memory regions.

• They may be connected in a non-uniform topology.

• They may support different core instruction sets.

Introducing heterogeneity into a system allows to use the advantages of the
individual architectures without committing to just one of them. The recent
boom in GPU-computing for massively parallel workloads has shown both
the advantages of and demand for using specialized hardware for specialized
tasks [6].

As more internal devices – such as network cards – increasingly resemble
specialized processors, the demand to use them for other purposes will grow.
In mobile devices, having a small and low-power core for standby operation
while also having a more powerful core for heavier workloads can decrease
the overall power consumption without sacrificing performance. It may even
increase peak performance, because it allows the big core to be much more
powerful than what one would choose if it had to be powered all the time.

Increasing heterogeneity reflects the trend of single computers more and
more resembling computer networks. But traditional operating systems still
assume perfect uniformity and a single shared view of memory. The multiker-
nel [3] approach on the other hand embraces heterogeneous and non-coherent
memory architectures.

3

2 Related Work

In 2012, Le Sueur and Rodgers ported SMP Linux to the OMAP4430 (the direct
predecessor of the OMAP4460) as a heterogeneous architecture, by providing
a homogeneous abstraction to the application layer and most of the kernel [9].
This proof that it is possible to run a heterogeneous, general purpose operat-
ing system on the OMAP4460 was a big factor in our decision to try a similar
project with Barrelfish. But where Le Sueur and Rodgers abstracted the het-
erogeneity away, we instead decided to expose it to all parts of the operating
system.

The first Barrelfish port to ARMv7-A was done by Hitz for the Gem5 sim-
ulator [8]. This system was later ported to the OMAP4460 and is the basis for
our ARMv7-M port. A heterogeneous Barrelfish port for x86 32 and x86 64 in
one machine was done by Menzi [10].

3 Background

3.1 OMAP4460 SoC

The OMAP4460 [12] is a system on a chip (SoC) by Texas Instruments, in-
tended for use in consumer devices like smartphones and tablet computers.
It contains:

• A dual core ARM Cortex-A9 processor

• Two ARM Cortex-M3 processors

• A hardware spinlock module

• A mailbox module

• Many devices to process media input and output

The intention is that the Cortex-A9 will be running a general purpose operat-
ing system, while the Cortex-M3 processors will only be running a real-time
operating system to control the imaging subsystem.

4

L1 MMU

& Cache

L1 MMU

& Cache

Cortex-A9 Subsystem Cortex-M3 Subsystem

L1 MMU & Shared Cache

L2 MMU & Memory

L3 Memory

Snoop Control Unit

L2 Cache

CPU CPU CPU CPU

Figure 1: The memory layout for both the Cortex-A9 and Cortex-M3 subsys-
tems.

Figure 1 shows the overall memory layout. Both subsystems can access
all physical memory over the L3 interconnect. The A9 subsystem contains
a snoop control unit to ensure cache coherence between the two cores. Both
Cortex-M3 processors share the same cache module, which implies coherence.
But there is no cache coherence between the two subsystems, making the use
of shared memory both complicated and expensive.

For this thesis we used a PandaBoard ES revision B1, which is a USB-
programmable development board for the OMAP4460.

3.2 Cortex-M3 subsystem

Because the Cortex-M3 [5] processor is intended for use as a microcontroller,
it lacks many features that a general purpose processor would contain. On
the OMAP4460, the Cortex-M3 subsystem contains additional devices to com-
pensate for the lack of processor features, most notably a cache and a memory
management unit (MMU) with a hardware pagetable walker. The two Cortex-
M3 processors share all the devices of the subsystem.

3.2.1 Memory model

The memory model for the Cortex-M3 subsystem on the OMAP4460 is ar-
guably its most unusual feature. As the processor itself does not contain a
MMU, all memory translation is done through additional devices. Instead of
one MMU doing all translation and permission work, there are two MMUs
connected in series:

5

• A MMU for the cache, which is completely software loaded and does
region based permission and translation. This can be bypassed by dis-
abling the cache.

• A MMU for accesses on L2 and L3 memory. This MMU can walk two-
level pagetables in hardware, and features a 32-entry TLB, but it does
not handle access permission.

The combination of these two MMUs allows to use both page tables and mem-
ory protection, but fine grained permissions like per-page read-only have to
be handled in software.

The different stages of a memory access can be seen in Figure 2.

Virtual Address

Intermediate Address

Physical Address

CPU CPU

Cache

L2 Local

Subsystem

Memory

Shared Cache MMU

L2 MMU

L3 Interconnect

Figure 2: The different stages in address translation and access in the Cortex-
M3 subsystem.

Because both MMUs can translate addresses, most addresses will be trans-
lated twice, with the notable exception of a few special sections that are not
in L3 memory:

• A private section within the processor itself, containing control registers
for the nested vectored interrupt controller (NVIC).

• A section in L2, containing control registers for the shared cache and L2
MMU as well as a bit of RAM.

• Two bit-banded sections of virtual address space, which are aliased to
other parts of the virtual address space by the processor itself.

6

These special cases directly affect not only the kernel but also applications:

• Some virtual addresses will never point to memory, because they bypass
the MMU. Unprivileged writes to control registers will be ignored, so
untrusted code will not be able to interfere with the kernel. Applications
that try to use these addresses will probably crash.

• Some configuration registers can not be mapped to a different part of
the virtual address space.

Even without a memory protection unit (an optional processor feature), the
Cortex-M3 checks all memory accesses using a default map of permissions.
This means that all memory accesses need to satisfy two policies, one static
and checked by the processor, the other configurable and checked by the
shared cache MMU.

As both processors share the same cache module, they necessarily share
their complete virtual address space (except for the local section within the
processors themselves).

3.3 ARMv7-M Profile

The ARMv7-M [4] processor profile is specifically designed for microcon-
trollers, focusing on simplicity and predictability rather than general perfor-
mance. It does not support regular ARM instructions, but only Thumb2, a
more compact instruction set containing both 16-bit and 32-bit instructions.

Instead of ARMv7-A’s eight execution modes, it only features two: a priv-
ileged handler mode and a thread mode that can be set to be privileged or
unprivileged, with separate stack pointers for each.

It features the same registers as ARMv7-A, though with a few differ-
ences in usage. The general purpose registers (r0 - r12) are separated into
low (r0 - r7) and high (r8 - r12) registers. For 16-bit instructions, only low reg-
isters may be specified. The three special purpose registers are the same as
in ARMv7-A: the program counter (pc, r15), the link register (lr, r14) and the
stack pointer (sp, r13). The pc and lr are not allowed to be loaded in the same
instruction.

A big difference is the program state register xpsr, which stores:

• The current status flags

• The currently active exception vector (0 if in thread mode)

• A bit indicating that we are executing Thumb2 instructions
(can be changed but generates exception if not 1)

• Information for interrupted load/store multiple instructions and If-Then-
blocks. This part of the register is normally inaccessible, but can be set
on exception return.

Thumb2 instructions are similar to ARM instructions and there is a unified
assembly language that can be used for both instruction sets, but generally its
immediates are smaller, branch ranges shorter, and fewer registers are allowed
to be specified. Instead of directly allowing any instruction to be conditional,

7

all conditional instructions have to be inside If-Then (IT) blocks, which are
generated by the IT instruction.

To indicate that a given instruction is in Thumb2, every load to the pc (re-
gardless of what instruction is used to achieve it) must set the least significant
bit to 1 – effectively jumping to an odd address. Failing to do so will trigger a
fault.

3.3.1 Exception model

One of the biggest differences between ARMv7-M and ARMv7-A is the sim-
plified exception model. Whereas ARMv7-A uses several different modes
depending on the type of exception, with differences in the banked registers,
ARMv7-M uses one mode for all exceptions, with only the stack pointer op-
tionally banked.

For each possible interrupt, the interrupt vector table holds the address of
the corresponding exception handler. By default, the vector table is at address
0, but it can be relocated to addresses up to 0x2FFFFF00 (but must be aligned
to its size).

When an exception is taken, the following sequence of events happens:

• The corresponding entry in the vector table is read.

• The beginning of the interrupt handler is prefetched.

• Registers r0-r3, r12, lr, pc and xpsr are pushed on the stack.

• The processor transfers into handler mode, a special return address is
loaded into lr.

• The exception handler starts executing.

If these operations trigger a fault (e.g. the vector table entry is invalid), a hard
fault is triggered. If a hard fault can not be handled, the processor stalls.

Rest of Stack

XPSR

PC

LR

R12

R3

R2

R1

R0

Previous SP

SP

Figure 3: The layout of the stack when the exception handler is entered.

8

Figure 3 shows the layout of the pushed registers on the stack. The set
of pushed registers corresponds to the caller-saved registers in the function
call standard (with the addition of xpsr), so the exception handler could be a
regular C function.

The only way to exit handler mode is to load the pc with a special value
of the form 0xFFFFFFFX — with X being either 1, 9 or D to specify mode and
stack to return to — which triggers the following sequence of events:

• The registers r0–r3, r12, lr, pc and xpsr are restored from the specified
stack.

• The processor transfers into the specified mode, which can be either
thread mode or handler mode.

• Execution resumes.

One very important detail is that the context is always pushed on the stack of
the mode that triggered the exception, rather than that of the mode entered.
This means that stack faults are generally unrecoverable, as the attempt to
push the registers will trigger another fault.

3.3.2 Synchronisation

The ARM and Thumb2 instruction sets provide exclusive load and store oper-
ations (ldrex and strex), that are monitored by the memory bus. Because the
subsystems use separate buses to connect to the L3 interconnect, they can only
enforce exclusivity within a subsystem (either the Cortex-A9 or the Cortex-M3
subsystem), but not across the subsystems. They can therefore not be used for
cross-architecture synchronisation.

To allow the different subsystems to synchronize easily, the OMAP4460
contains a hardware spinlock module. The module is very simple: it contains
32 memory mapped registers that each represent one lock.

When read for the first time, they read as “0”, meaning the lock was free
before and has now been acquired by this read operation. All subsequent
reads will return “1”, meaning the lock is already taken. Writing to the register
frees it up again.

This very simple device allows spinning on what appears to be memory,
using regular accesses instead of specialized instructions. As all the registers
are in contiguous addresses on the same page, the individual spinlocks can
not be isolated – a process with direct access to one of them is able to access
all.

3.4 Barrelfish

Barrelfish is a research operating system, developed by researchers from ETH
Zurich and Microsoft Research. Its core concept is that a multicore or multi-
processor machine can be treated as a distributed system – a multikernel [3].

Processor cores run independently, sending messages for communication
instead of relying on shared memory. Common state information is replicated
instead of shared. The goal is to build a system that will scale well with the
increasing number of processor cores by treating a single machine more like
a network.

9

Because the individual kernels (called CPU-drivers) are running indepen-
dently, they do not all have to run on the same processor architecture or have
a common view of memory (such as cache coherence). As all sharing of infor-
mation is done explicitly through message passing, Barrelfish lends itself to
heterogeneous architectures.

3.4.1 Devices

To facilitate the writing of device drivers, Barrelfish uses a domain specific
language (DSL) called mackerel, which compiles device specifications into
large header files of inline functions that access all the registers. This separates
the logic of the driver from the definitions of the register layout and access
rules.

3.4.2 Message Passing

Barrelfish uses different protocols for message passing, depending on what
the architecture supports and whether the message is sent to a process on the
same core or on a different core. The protocols are specified in a DSL called
flounder, which separates the decision which protocol to use and protocol
logic from the architecture specific implementation.

3.4.3 Dispatchers

Barrelfish not only schedules processes in the kernel, but all processes also
schedule their own threads using a standardized system called a dispatcher [2].
At any given time, a process can either be executing a thread or the dispatcher.
When a process is scheduled, execution resumes in the dispatcher instead of
the thread that was interrupted.

3.4.4 Capabilities

Barrelfish uses capabilities [7] for memory management. A capability can refer
to a kernelspace object or a region of physical memory. All allocation of virtual
memory is achieved in userspace through the invoking and manipulating of
capabilities.

3.4.5 Services

Similar to a microkernel, Barrelfish uses the CPU-driver only for scheduling,
isolation and interrupt handling. Most architecture independent functionality
is instead provided by userspace services such as the monitor (which commu-
nicates across cores) or a memory server.

3.4.6 Hake

Barrelfish uses a DSL called hake to specify how a target should be compiled.
Every directory of the source tree contains a hakefile describing how to build
the system of that subtree, and each target architecture defines a set of rules
about what compiler options to use. From this information a big makefile
containing the build rules for all necessary files is automatically generated.

10

4 Design and Implementation

In this section, we show how a general purpose operating system can be
designed for hardware configurations like the Cortex-M3 subsystem on the
OMAP4460, and discuss the implementation details of our Barrelfish Pand-
aBoard port from ARMv7-A to ARMv7-M.

As there already was a working ARMv7-A port for the PandaBoard, we
could heavily base the new port on existing code. The Barrelfish codebase is
separated into architecture independent and architecture specific code. Some
of the ARMv7-A specific code could be used without any changes at all, and
many only needed small adjustments, since the external devices (such as the
serial port) are the same.

The biggest changes were necessary in the code relating to kernel boot-
strapping, exception handling, context saving/restoring and memory man-
agement. But even for these cases the ARMv7-A code was a helpful guide.

4.1 General design decisions

In principle, the Cortex-A9 and Cortex-M3 share a common subset of instruc-
tions and could potentially execute the same binaries. This is the approach
taken by the SMP Linux port: all code was compiled to the common subset in
order to abstract away the differences between the processors [9].

However, one of the biggest advantages of the multikernel approach of
Barrelfish is that the individual CPU-drivers do not need to be identical or
even similar at all. Our decision to build separate CPU-drivers for the Cortex-
A9 and Cortex-M3 meant that we could use the existing gcc targets for these
processors, and that the existing Cortex-A9 image could be largely unchanged.

We decided not to activate both Cortex-M3 processors, because they share
their virtual memory space. There is no way to isolate two processes running
simultaneously on both (though running two threads of the same process
would arguably be possible). More importantly, because the shared cache
MMU does not distinguish between privileged and unprivileged accesses, the
two processors would have to synchronize all kernel entries and exits, leading
to a massive overhead.

4.2 Memory Management

The L2 MMU contains a hardware walker for two-level page tables, whereas
the shared cache MMU only supports region based mappings and is com-
pletely software loaded. To get any reasonable performance, the L2 MMU
should be used for all translations, and the shared cache MMU only be used
for access control.

Because the ARMv7-A MMU contains two separate bases for page tables,
the existing code relied on the ability to reserve the second table for ker-
nelspace mappings, only exchanging the first table when switching between
processes.

To reuse this existing code with our L2 MMU, which only has one table
base, we decided to replicate the kernelspace part on all page tables ever
used. A counter is put into the very first table entry and is incremented on
every change to a kernelspace mapping. If the page table is then exchanged

11

for a table with a lower counter, the whole upper half of the table (which
corresponds to all kernelspace mappings) is copied over.

This way, the currently active page table always contains the most recent
kernel mappings. This approach is very coarse-grained, but it turns out that
the kernelspace mappings are hardly changed at all and need to be replicated
in some form anyway. Putting the counter directly into the table entry is not
a problem, because the L2 MMU ignores at least a full byte of all entries, and
we locked the mapping for page 0 in the TLB anyway (so the MMU will never
look at that table entry).

4.3 Memory Protection

The kernel of any general purpose operating system must be able to protect
itself from untrusted userspace programs, and also to protect these programs
from each other (isolation). Since the L2 MMU does not feature any protection
mechanism, we have to use the shared cache MMU instead. To protect kernel
memory from userspace access, we can use the fact that only privileged writes
can change the chache MMU policies:

• We reserve some of the regions in the shared cache MMU for the region
of memory where the kernel resides. The number of regions necessary
depends on how much of the kernelspace we are actually using.

• We use a small region at virtual address 0 for the vector table, and mark
it as readonly.

• We use another small region for the exception entry- and exit code, and
mark it as executable but not writeable.

• Whenever we exit the kernel, we first remap the kernel regions to point
to userspace addresses.

• Whenever we enter the kernel, we first remap the kernel regions 1:1 to
the correct physical addresses.

This way, whenever a userspace application tries to access kernel memory, it
accesses userspace memory instead.

The smaller regions are necessary, so the code to change the kernel region’s
permissions can be executed from a trusted area. Optionally, the vector table
and the exception handlers can be mapped by the same region.

4.3.1 Access Policies

Because the shared cache MMU is completely software loaded and does not
support page tables, while the L2 MMU that can walk tables does not support
permissions, the question arises how one can implement the classical permis-
sion bits (such as read only) in a reasonable way.

These permissions are not strictly necessary for general purpose operating
systems, but they have been standard for so long that many advanced OS
techniques rely on them (e.g shared libraries, copy on write).

A L2 page table entry contains many bits that are ignored by the MMU.
These can be used by the kernel to store additional information about this

12

mapping, such as access permission policies. Entries with policies other than
“read, write, execute” need to be marked as invalid, so the first access will
generate a pagefault. The pagefault handler then needs to perform the fol-
lowing operations:

• Look up the address that generated the fault in the page table.

• If the corresponding entry has the special permission bits set, add the
mapping into the TLB.

• Add a mapping for the faulting address into the shared cache MMU,
with the specified access policy and no translation.

• Restart the faulting instruction.

When the process resumes, it will be checked by the shared cache MMU and
then hit the TLB instead of looking at the page table again.

The big advantage of this approach is that the page table itself is not mod-
ified. The mapping will be removed on the next TLB flush, such as during
a context switch. As the shared cache MMU only has two permission bits
(readonly, execute only), we can only enforce these permissions.

One subtlety of this approach is that context switching potentially becomes
much more expensive. The next time we switch back to the old context, its
special permission mappings will all have been flushed, so the first access will
again lead to a page fault.

Because of time constraints, we were not able to bring up caches on the
Cortex-M3. This also means we did not have time to actually implement the
memory protection scheme as detailed here.

4.4 CP15

ARMv7-A processors contain a coprocessor 15 (CP15), that can be accessed
with special assembly instructions. It provides direct access to system con-
figuration registers, including the ones to control the MMU and cache. As
the Cortex-M3 does not contain such a coprocessor, we have to use memory
mapped registers instead.

One big design decision was whether we should keep the names of the
CP15 functions, effectively emulating the device for the rest of the system, or
if we should introduce new names for the new functions instead. We decided
to introduce new names, for several reasons:

• The functionalities provided by our devices and the CP15 are not the
same. Some distinction about what functions we can use must therefore
be made anyway.

• Explicit invocation of either CP15 or devices actually simplifies porting,
because it shows which parts of the kernel rely on the devices.

• Providing a device to the kernel that does not actually exist makes the
architecture harder to understand.

13

One way to simplify the distinction would be to fundamentally change the
hardware abstraction layer. When we only used ARMv7-A, it was a reasonable
assumption that there would always be a CP15 (and a GIC, and a system
timer). Now that we introduce ARMv7-M, which provides that functionality
in a different way (on the OMAP4460 – other systems might not have any
MMUs or caches at all), we might need to make the abstraction layer more
generic.

4.5 Synchronisation

When implementing a driver for the hardware spinlock module, it became
clear that the kernel and applications have very different requirements for
synchronisation:

The kernel only needs to synchronise a fixed set of elements known at
compile time. In the current Barrelfish PandaBoard port, this only consists of
the serial connection. Applications can require an arbitrary number of locks,
and can not be trusted with access to locks belonging to other processes.

4.5.1 Kernel Synchronisation

The synchronisation primitives provided in the ARM/Thumb2 instruction
sets (ldrex and strex) only work within a subsystem, meaning they can be used
to synchronize between the two Cortex-A9 cores but not with the Cortex-M3.
This narrow scope of language features is a general problem of current hetero-
geneous systems, and the OMAP4460 solves this through a separate spinlock
module. In the absence of such a module, it would for example be possi-
ble to run consensus algorithms over the message passing interface (provided
that interface does not itself require synchronisation), but that would be very
inefficient.

We implemented a simple kernelspace driver for the spinlock module,
which allows the kernel to acquire or release a specified lock easily. The
code to access the memory mapped registers is automatically generated from
a device specification, using the mackerel language.

4.5.2 Application Synchronisation

The downside of the spinlock module is that all the locks are on the same
page. We can not allow regular applications to directly access it, because they
would be able to acquire locks intended for other processes or even the kernel.

It is out of the scope of this thesis to implement a userspace locking service,
but there are two approaches that would integrate well with Barrelfish:

• Introducing lock capabilities, that could be invoked to acquire or release
locks.

• Introducing a locking service that could be accessed through normal
message passing.

Either one would be able to manage the locks for all applications and could
abstract away the actual implementation for each architecture. If the locking
service was centralized, the act of message passing would already serialize
the request, so it would only need to keep track of the locks’ state.

14

4.6 Exception Handling

As the ARMv7-M exception model is much simpler than the ARMv7-A one,
writing exception handlers is very easy. In principle, the exception handler
could just be a C function, but for Barrelfish we want more control, so the first
part is written in assembly.

All handlers should start by looking at the link register. The special return
address is different depending on whether the exception was triggered in
thread mode or handler mode. For exceptions generated in thread mode, the
handler should then save the interrupted context, part of which has to be read
from the thread stack. In Barrelfish, the context save area depends on whether
the process was executing a thread or dispatcher code.

After the context has been saved, all registers are free to be used. Because
the first part is the same for all exceptions other than service calls, we can use
the same handler for all of them, putting the exception-specific code into a C
function called by the handler.

Returning to thread mode is achieved by writing a special value into the
pc. The very simple and clean exception model would easily allow us to make
the CPU-driver preemptive, but there is no obvious reason to actually do so.

4.7 Interrupt Controller

As the nested vectored interrupt controller (NVIC) is very different from the
generic interrupt controller (GIC) used on ARMv7-A, we had to write the
driver for it from scratch.

The NVIC register layout is specified using the mackerel language. The
driver is mainly concerned with initialization, because the NVIC does not
need to be regularly accessed if it is properly set up. While the GIC requires
acknowledgements from the CPU, the NVIC is more tightly integrated and
monitors the entering and exiting of exception handlers autonomously.

The NVIC also contains a SysTick timer module as a subdevice, which
can be configured in the same memory mapped region. SysTick can generate
timer interrupts, by counting the number of clock cycles of the CPU.

System faults (entries 2 - 16 in the vector table) are enabled as part of
the kernel bootstrap procedure. External interrupts (entries 17 - 80) are not
enabled by default, but can be enabled through the driver.

The much smaller set of external interrupt lines (64 on the Cortex-M3 com-
pared to 128 on the Cortex-A9) raises the question of how a heterogeneous sys-
tem should handle interrupt asymmetry. Two reasonable approaches would
be to either have the Cortex-A9 forward interrupts to the Cortex-M3 through
message passing, or to not spawn any applications on the Cortex-M3 that rely
on interrupts it does not receive.

4.8 Entering Handler Mode at Startup

When the Cortex-M3 comes out of reset, it executes the reset handler in privi-
leged thread mode rather than handler mode. To correctly separate the kernel
from userspace, we need it to always be executing in handler mode. To achieve
this first transition, the bootstrapping function that initializes exception han-
dling is temporarily registered as the handler for system calls. Thread mode is

15

restricted to unprivileged execution, and then a system call is triggered. The
rest of the kernel bootstrapping is then done in handler mode.

4.9 Saving and Restoring Context

4.9.1 Basic Context Flow

In Barrelfish, there are several places where registers are saved or restored:
A yielding thread will save its context, then the dispatcher will schedule and
restore another thread. When entering an exception handler, all registers are
stored to a safe location. There are two regions they can be saved to, depend-
ing on whether it was the dispatcher or a thread that was running at the time
of the interrupt.

Thread Dispatcher

CPU-Driver

Figure 4: Control flow between threads, dispatchers and the CPU-driver. In-
stead of directly resuming preempted threads, the CPU-driver gives control to
the dispatcher instead, which can then restore the thread or schedule another
one.

Figure 4 shows the flow of control, which is also the flow of saved and
restored contexts. The CPU-driver can be entered from either a thread or the
dispatcher, but when returning to userspace, it will always give control to the
dispatcher.

If the dispatcher was interrupted, it will be restored at the point of inter-
rupt and continue from there. If it was a thread that was interrupted, the
dispatcher is entered at a fixed location (upcalled) and it can decide which
thread to resume.

To achieve these transitions we need to implement:

• A kernelspace function to save the interrupted context

• A kernelspace function to restore a context

• A userspace function to save a yielding thread’s context

• A userspace function to restore a context

All four cases are written in assembly. As Thumb2 is more restrictive about
the loading and storing of registers, the ARMv7-A code for the dispatcher
could not be directly used but had to be modified.

16

When restoring a context in userspace, we have the problem that the stored
pc value can not directly be loaded – not only does it contain the wrong value
(lsb 0, indicating ARM mode), it can also not be used in a ldm instruction
together with the lr register. To cope with this problem, we push the corrected
pc on the stack, together with a register we use to point to the saved context.

/∗ r0 points to dispatcher s t r u c t , r1 to saved contex t ∗/
/∗ Re−enable d ispatcher ∗/
mov r2 , #0
s t r r2 , [r0 , # (OFFSETOF DISP DISABLED)]
/∗ r e s t o r e sp and l r f i r s t , because they can not be used with ld r ∗/
l d r r0 , [r1 , # (SP REG ∗4)]
mov sp , r0
l d r r0 , [r1 , # (LR REG ∗4)]
mov l r , r0
/∗ Restore apsr condi t ion b i t s ∗/
l d r r0 , [r1 , # (CPSR REG ∗4)]
msr apsr , r0
/∗ read pc and r1 values and push them on stack ∗/
l d r r2 , [r1 , # (R1 REG ∗4)]
l d r r3 , [r1 , # (PC REG ∗4)]
/∗ make sure l s b i s one (f o r c e thumb mode) ∗/
orr r3 , #1
push {r2 , r3}
/∗ Restore r e g i s t e r s ∗/
l d r r0 , [r1 , # (R0 REG ∗4)]
l d r r2 , [r1 , # (R2 REG ∗4)]
l d r r3 , [r1 , # (R3 REG ∗4)]
l d r r4 , [r1 , # (R4 REG ∗4)]
l d r r5 , [r1 , # (R5 REG ∗4)]
l d r r6 , [r1 , # (R6 REG ∗4)]
l d r r7 , [r1 , # (R7 REG ∗4)]
l d r r8 , [r1 , # (R8 REG ∗4)]
l d r r9 , [r1 , # (R9 REG ∗4)]
l d r r10 , [r1 , # (R10 REG ∗4)]
l d r r11 , [r1 , # (R11 REG ∗4)]
l d r r12 , [r1 , # (R12 REG ∗4)]
/∗ pop r1 and pc , leaving no r e g i s t e r clobbered ∗/
pop {r1 , pc}

As we will discuss in 4.9.2, this is still not quite enough to restore all possible
contexts, but it does cover all contexts that can be saved by the userspace save
function. The userspace save function is much simpler, because it is allowed
to clobber the caller-saved registers.

Restoring a context in the kernel is special, because it is done through a
mode switch. This means that the caller-saved registers will be restored from
the thread mode stack by hardware, and the callee-saved registers need to be
restored beforehand. In some cases, such as when a process is run for the first
time, the stack pointer might not be initialized yet. We then need to initialize
the stack pointer, so we can push the necessary register values.

17

//r0 already points to saved contex t in memory
l d r r1 , [r0 , #56] //stored s tack pointer
sub r1 , #32 // a l l o c a t e s tack space f o r 8

r e g i s t e r s
//copy the 8 expected r e g i s t e r s
l d r r2 , [r0 , # (R0 REG ∗4)] //copy r0 entry
s t r r2 , [r1 , # (R0 REG PUSHED ∗4)]
l d r r2 , [r0 , # (R1 REG ∗4)] //copy r1 entry
s t r r2 , [r1 , # (R1 REG PUSHED ∗4)]
l d r r2 , [r0 , # (R2 REG ∗4)] //copy r2 entry
s t r r2 , [r1 , # (R2 REG PUSHED ∗4)]
l d r r2 , [r0 , # (R3 REG ∗4)] //copy r3 entry
s t r r2 , [r1 , # (R3 REG PUSHED ∗4)]
l d r r2 , [r0 , # (R12 REG ∗4)] //copy r12 entry
s t r r2 , [r1 , # (R12 REG PUSHED∗4)]
l d r r2 , [r0 , # (LR REG ∗4)] //copy l r entry
s t r r2 , [r1 , # (LR REG PUSHED ∗4)]
l d r r2 , [r0 , # (PC REG ∗4)] //copy pc entry
s t r r2 , [r1 , # (PC REG PUSHED ∗4)]
l d r r2 , [r0] //copy xpsr entry
s t r r2 , [r1 , # 2 8]
// s e t thread s tack pointer to saved contex t
msr PSP , r1
// r e s t o r e unpushed r e g i s t e r s : r4−r11
add r0 , # (R4 REG ∗4) //point to r4 entry
ldmia r0 , {r4−r11} // r e s t o r e r4 − r11
l d r l r , =#0xFFFFFFFD // s p e c i a l re turn address to change

modes
bx l r // a c t u a l contex t switch

This is the only time in the whole system that we do not have to enforce the
lsb of the pc value to be 1, because the information that we want Thumb mode
is in the xpsr register instead. The epsr part of that register can normally not
be read or written (reads return 0, writes are ignored), but it is pushed on
exception entry and read on exception return, making this the only way to set
the IT bits outside an IT block.

4.9.2 Special Cases

It is tempting to assume that the two context restore functions will only ever
be called with contexts that have been created by the corresponding save func-
tions. This would be especially convenient for the userspace one, because then
we could use the fact that the userspace save function clobbers registers before
saving.

In fact, the restoration code in both the kernel and the dispatcher is also
called on artificially built contexts, the first time a new process or thread is
scheduled. Most importantly though, the userspace restoration code can be
called with a kernelspace saved context, which turned out to be a big issue.

The context restoration on exception exit is strictly more powerful than all
other means to load registers, because it is the only time that the epsr part of
the xpsr register can be written (all other attempts will simply be ignored).
The epsr part is used to store information about interrupted ldm/stm instruc-
tions and IT blocks. Restarting an interrupted ldm/stm instruction is safe,
because the processor reverts changes to registers that would lead to different
outcomes on restart (such as address writeback). But interrupted IT blocks

18

are not safe to restart, because they can contain arbitrary state-changing in-
structions (such as incrementing register values).

In short, the userspace context restoration code will be called on contexts
that can only be restored by the kernel. To handle this, we had to introduce a
new system call that can be used to restore arbitrary contexts.

4.10 Hake Target ARMv7-M

In order to compile the ARMv7-M port, we introduced a new hake target
architecture called armv7-m. It is heavily based on the existing armv7 target,
with adjusted compiler options to force Thumb output. Because hake allows
several target architectures in the same build tree, compiling the files for both
ARMv7-A and ARMv7-M is no harder than just compiling for ARMv7-A.

4.11 Creating a Bootable Image

To create a single image that can be transmitted to the PandaBoard over USB,
the ARMv7-A port of Barrelfish uses a tool called molly. During compilation,
molly parses a list of modules to include and generates C code that will set
up a corresponding multiboot info. The modules (ELF object files) are then
stripped of unnecessary sections and transformed into opaque blocks of data.
The final image consists of

• The functions to create a multiboot info object

• Libelf functions to load and relocate ELF images

• Bootstrap code that loads the kernel into memory, writes the multi-
boot info and starts the kernel

• Images of all the specified modules

To create a single image for our heterogeneous system, we decided to create
two such molly images and nest one in the other. An otherwise unused field
of the multiboot info struct is used to tell the ARMv7-A kernel where the
second image is located.

While the cores are not yet able to spawn applications on each other, this
separation of modules allows them to each take care of their own applica-
tions. When cross-core application spawning becomes possible, this approach
should be replaced by a single molly instance containing the modules for both
architectures.

4.12 Starting a Cortex-M3 Core

Before the Cortex-M3 can start executing code, the following steps have to be
taken by the Cortex-A9:

• Power on the Cortex-M3 subsystem

• Activate the Cortex-M3 subsystem clock

• Load the image to be executed into memory

19

• Enable the L2 MMU

• Set up mappings for the loaded image in the L2 MMU (can be written
directly into the TLB)

• Write the first two entries of the vectortable (initial sp and reset vector)

• Take the Cortex-M3 out of reset

It is important to note that the Cortex-M3 is in a virtual address space from the
very beginning, reading the vector table at virtual address 0. Inserting a 1:1
mapping for the kernel image greatly simplifies the bootstrapping of memory
management on the Cortex-M3 once it is running, because it needs to know
the physical address of the page tables it sets up.

4.13 Debugging

While the OMAP4460 contains many debugging features, we did not have
the special hardware necessary to access them. All debugging was achieved
through serial output.

For the early stages, we could rely on the working Cortex-A9 to print infor-
mation on the Cortex-M3’s status. As soon as serial output on the Cortex-M3
worked, we used it for all kernelspace related debugging messages. Because
the exception and system call transitions were implemented later, we could
not print in userspace right away. To find out if a line of application code
was reached, we would insert a division by 0, and check if the exception was
triggered.

This was especially important when implementing and debugging the sys-
tem call transitions, because these had to be written in assembly and were
therefore error-prone. While this way of debugging was far from convenient,
it was sufficient to find out which part of the code needed reviewing.

5 Evaluation

Because we did not have time to bring up caches, the performance of the
Cortex-M3 can not really be compared with the Cortex-A9 yet. While the
Cortex-A9 finishes setting up all userspace services in under 3 seconds, the
Cortex-M3 takes either 40 seconds (using -O2) or 2 minutes (using -O0) for
the same task, depending on the level of compiler optimization.

Comparing userspace application performance of the two processors, pre-
liminary tests suggest a factor of 30 for memory-unintensive workloads. Inter-
estingly, workloads consisting almost entirely of integer divisions only show
a factor of 10 (including the kernel overhead). This is because the Cortex-
A9 uses a software division algorithm (up to 500 instructions), whereas the
Cortex-M3 has a divider in hardware (up to 12 cycles). This suggests that,
with proper caching, the Cortex-M3 might even surpass the four times faster
clocked Cortex-A9 for very specific workloads (which are probably unrealis-
tic).

In total, the implementation of the ARMv7-M port of Barrelfish required
5300 lines of code, but many of these are from new files that only slightly differ

20

from their ARMv7-A counterparts. The code used for debugging (which has
since been removed) required another 800 lines.

6 Conclusion

We successfully implemented a Barrelfish port for the Cortex-M3 subsystem
on the OMAP4460, that can be executed on the PandaBoard.
More specifically, we can

• Bootstrap the CPU-driver, initializing all necessary devices

• Print to the serial console, synchronizing accesses using the spinlock
module

• Start all the regular Barrelfish userspace services, such as init, monitor,
mem serv, skb, ramfsd, spawnd and startd

• Execute userspace applications, such as memtest

• Handle exceptions such as timer interrupts or page faults

Because of time constraints and the inconvenient debugging procedure, we
could not implement as much as we would have wanted. The current imple-
mentation still lacks the following features:

• Support for caching and the shared cache MMU

• Support for the mailbox module

• A cross-architecture communication interface

Because of these limitations we currently treat the Cortex-M3 as a bootstrap
processor, with its own multiboot info and without knowledge of the Cortex-
A9. This corresponds to running two separate instances of Barrelfish on the
same machine, instead of one instance running as a multikernel. In the fin-
ished Barrelfish port, the Cortex-M3 should only be an application processor,
getting its information about what processes to start directly from the Cortex-
A9.

Because we have not enabled the caches, we can not implement the pro-
tection feature detailed in 4.3.1 yet. It also means that the system is currently
running very slowly.

Our experience with the Cortex-M3 subsystem has shown that the gap
between regular processors and microcontrollers can be bridged with exter-
nal devices, such as MMUs and communication modules. But the bridging
would be much easier if these devices were chosen with operating systems
in mind [11] – in this case, not separating protection from translation in the
MMUs.

21

7 Future work

There is much potential for future work, on support for heterogeneity in gen-
eral and the OMAP4460 port of Barrelfish in particular.

• Implementing a cross-architecture message passing channel using the
mailbox module.

• Based on that message channel, degrading the Cortex-M3 to an applica-
tion processor and executing Barrelfish as a truly heterogeneous multi-
kernel on both architectures.

• Activating caches and implementing the memory protection mechanism
discussed in 4.3.1

• Activating caches and doing a systematic performance analysis, com-
paring the Cortex-A9 to the Cortex-M3:

– Comparing the performance of services, such as system calls and
messaging

– Comparing the responsiveness to external interrupts

– Comparing the performance of various workloads

– Analysing the impact of merely having the Cortex-M3 running on
the performance of the Cortex-A9

The last point is especially interesting, as this is where we expect the multik-
ernel approach to shine. Because only messages and the spinlock for printing
are shared between the processors, in the extreme case of the Cortex-M3 idling
(only executing applications that do not print or send messages), the Cortex-
A9 should not be performing any worse than if the Cortex-M3 had never been
started up.

22

References

[1] Andrew Baumann Timothy Roscoe Paul Barham Tim Harris
Adrian Schuepbach, Simon Peter and Rebecca Isaacs. Embracing
diversity in the barrelfish manycore operating system. In Proceedings of
the Workshop on Managed Many-Core Systems, June 2008.

[2] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler activations: effective kernel support for
the user-level management of parallelism. ACM Trans. Comput. Syst.,
10(1):53–79, February 1992.

[3] Pierre-Evariste Dagand Tim Harris Rebecca Isaacs Simon Peter Timo-
thy Roscoe Adrian Schuepbach Andrew Baumann, Paul Barham and
Akhilesh Singhania. The multikernel: A new os architecture for scal-
able multicore systems. In Proceedings of the 22nd ACM Symposium on OS
Principles, October 2009.

[4] ARM. ARMv7-M Architecture Reference Manual, 2006 - 2010. Revision C.

[5] ARM. Cortex-M3 Technical Reference Manual, June 2011. Revision r1p1,
Version E.

[6] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader:
a gpu-accelerated software router. SIGCOMM Comput. Commun. Rev.,
40(4):195–206, August 2010.

[7] Norm Hardy. The confused deputy: (or why capabilities might have been
invented). SIGOPS Oper. Syst. Rev., 22(4):36–38, October 1988.

[8] Samuel Hitz. Multicore armv7-a support for barrelfish. Bachelor’s Thesis,
August 2012.

[9] Etienne Le Sueur and Simon Rodgers. Operating system support for the
heterogeneous OMAP4430: A tale of two micros. In 13th Linux.conf.au,
Ballarat, Australia, jan 2012.

[10] Dominik Menzi. Support for heterogeneous cores for barrelfish. Master’s
thesis, ETH Zurich, July 2011.

[11] Baumann A.-Roscoe T. Mogul, J. C. and L Soares. Mind the gap: recon-
necting architecture and os research. In Proceedings of the 13th USENIX
conference on Hot topics in operating systems, 2011.

[12] Texas Instruments. OMAP4460 ES1.x Technical Reference Manual, February
2011. Revision Y, March 2013.

23

