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Abstract

This paper introduces AC, a set of language constructs for

composable asynchronous IO in native languages such as

C/C++. Unlike traditional synchronous IO interfaces, AC

lets a thread issue multiple IO requests so that they can

be serviced concurrently, and so that long-latency opera-

tions can be overlapped with computation. Unlike tradi-

tional asynchronous IO interfaces, AC retains a sequential

style of programming without requiring code to use multi-

ple threads, and without requiring code to be “stack-ripped”

into chains of callbacks. AC provides an async statement to

identify opportunities for IO operations to be issued concur-

rently, a do..finish block that waits until any enclosed

async work is complete, and a cancel statement that

requests cancellation of unfinished IO within an enclosing

do..finish. We give an operational semantics for a core

language. We describe and evaluate implementations that are

integrated with message passing on the Barrelfish research

OS, and integrated with asynchronous file and network IO

on Microsoft Windows. We show that AC offers comparable

performance to existing C/C++ interfaces for asynchronous

IO, while providing a simpler programming model.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming; D.3.3 [Program-

ming Languages]: Language Constructs and Features—

Input/output; D.4.4 [Operating Systems]: Communications

Management—Message sending

General Terms Languages, Performance

1. Introduction

In the future, processors are likely to provide a heteroge-

neous mix of core types without hardware cache coherence

across a whole machine. In the Barrelfish project we are in-

vestigating how to design an operating system (OS) for this
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kind of hardware, in which we can no longer rely on tradi-

tional shared-memory within the OS [4].

The approach we are taking is to construct the OS around

separate per-core kernels, and to use message passing for

communication between system processes running on dif-

ferent cores. Other contemporary OS research projects take

a similar approach [38]. Our hypothesis is that systems built

on message passing can be mapped to a wide variety of pro-

cessor architectures without large-scale re-implementation.

Using message passing lets us accommodate machines with

heterogeneous core types, and machines without cache-

coherence; we can map message passing operations onto

specialized messaging instructions [18, 34], and we can map

them onto shared-memory buffers on current hardware [4].

However, it is difficult to write scalable low-level soft-

ware using message passing. Existing systems focus either

on ease-of-programming (by providing simple synchronous

send/receive operations), or on performance (typically by

providing asynchronous operations that execute a callback

function once a message has been sent or received). The

same tension exists in IO interfaces more generally [27, 35].

For example, the Microsoft Windows APIs require software

to choose between synchronous operations which allow only

one concurrent IO request per thread, and complex asyn-

chronous operations which allow multiple IO requests.

We believe that the inevitable and disruptive evolution of

hardware to non-cache-coherent, heterogeneous, multi-core

systems makes support for asynchronous IO in low-level

languages such as C/C++ both essential and timely.

In this paper we introduce AC (“Asynchronous C”), a new

approach to writing programs using asynchronous IO (AIO).

AC provides a lightweight form of AIO that can be added in-

crementally to software, without the use of callbacks, events,

or multiple threads.

Our overall approach is for the programmer to start out

with simple synchronous IO operations, and to use new

language constructs to identify opportunities for the lan-

guage runtime system to start multiple IO operations asyn-

chronously.

As a running example, consider a Lookup function that

sends a message to a name-service process, and then receives

back an address that the name maps to. Figure 1 shows this

function written using Barrelfish’s callback-based interface.



void Lookup(NSChannel_t *c, char *name) {

OnRecvLookupResponse(c, &ResponseHandler);

// Store state needed by send handler

c->st = name;

OnSend(c, &SendHandler);

}

void ResponseHandler(NSChannel_t *c, int addr) {

printf("Got response %d\n", addr);

}

void SendHandler(NSChannel_t *c) {

if (OnSendLookupRequest(c, (char*)(c->st)) == BUSY) {

OnSend(c, &SendHandler);

} }

Figure 1. Querying a set of name server using Barrelfish’s

callback-based interface for message passing.

The Lookup function takes a reference to a channel (c).

The function registers a ResponseHandler callback to

execute when a LookupResponse reply is received. It

then registers a SendHandler callback to execute when

channel c has space for the outgoing message. (Many hard-

ware implementations of message passing provide bounded-

size message channels, and so it can be impossible to send a

message immediately.) In addition, Lookup needs to record

name in a temporary data structure so that it is available to

SendHandler. The On* functions are generated automat-

ically from an interface definition for the NSChannel t

channel.

With AC, the “lookup” example becomes a single func-

tion using synchronous Send/Recv operations: (We omit

some details to do with cancellation of unfinished IO opera-

tions; we return to cancellation in Section 2.)

// Caution: functions ending in AC may block

void LookupAC(NSChannel_t *c, char *name) {

int addr;

SendLookupRequestAC(c, name);

RecvLookupResponseAC(c, &addr);

printf("Got response %d\n", addr);

}

Compared with the callback-based implementation, this

LookupAC function is clearly much simpler: it avoids the

need for “stack-ripping” [3] in which the logical flow be-

tween operations is split across a series of callbacks. AC

leads to a form of composability that is lost with stack-

ripping. A function can simply call into other functions

using AC, and it can start multiple AC operations concur-

rently. For instance, to communicate with two name servers,

one can write:

void TwinLookupAC(NSChannel_t *c1,

NSChannel_t *c2,

char *name) {

do {

async LookupAC(c1, name); // S1

async LookupAC(c2, name); // S2

} finish;

printf("Got both responses\n"); // S3

}

The async at statement S1 indicates that execution can

continue to statement S2 if the first lookup needs to block.

The do..finish construct indicates that execution cannot

continue to statement S3 until both S1 and S2 have been

executed to completion.

Throughout AC, we keep the abstractions used for asyn-

chrony separate from the abstractions used for parallel pro-

gramming; code remains single-threaded unless the pro-

grammer explicitly introduces parallelism. The async and

do..finish constructs are solely there to identify op-

portunities for multiple messages to be issued concurrently;

unlike the async construct in X10 [7], our async does

not introduce parallelism. Consequently, many of our exam-

ples can be written with no concurrency-control beyond the

block-structured synchronization of do..finish.

We make a number of additional contributions beyond

the core design of AC. We introduce a new block-structured

cancellation mechanism. This approach to cancellation pro-

vides a modular way for a program to start asynchrony op-

erations and then to cancel them if they have not yet com-

pleted; e.g., adding a timeout around a function that is called.

In TwinLookupAC, cancellation could be used to abandon

one lookup as soon as the other lookup is complete. In con-

trast to our approach, traditional cancellation mechanisms

are directed at individual IO operations [1], or at groups of

operations on the same file, or at a complete thread (e.g.,

alerting in Modula-2+ [5]).

We introduce AC in more detail in Section 2. In Section 3

we present a formal operational semantics for a core lan-

guage modeling AC, including cancellation. We give the se-

mantics and discuss properties that it satisfies.

Section 4 describes two implementations of AC. The first

implementation uses a modified Clang/LLVM tool-chain to

add the AC operations to C/C++. The second implemen-

tation operates with Clang, or with GCC, and defines the

AC constructs using a combination of macros and existing

C/C++ extensions provided by these compilers. The second

implementation has slightly higher overheads than the first.

In Section 5 we look at the performance of implemen-

tations that are integrated with message passing on Bar-

relfish, and also at implementations that are integrated with

asynchronous IO on Microsoft Windows. In each case, AC

achieves most of the performance of manually written stack-

ripped code while providing a programming model that is

comparable to basic synchronous IO (and comparable to the

recent C# and F#-based abstractions for performing asyn-

chronous IO [32]). We discuss related work and conclude in

Sections 6 and 7.

2. Composable Asynchronous IO

In this section we introduce AC informally. We continue

with the example of a name-service lookup from the intro-

duction. We use it to illustrate the behavior of AC operations

in more detail, and to motivate our design choices.

Throughout this section our design choices are moti-

vated by providing two properties. First, a “serial elision”

property: if the IO operations in a piece of software com-



int LookupAllAC(NSChannel_t *cs[], int nc,

char *name, int *addr) {

bool seen_first = false;

int first_addr;

do {

for (int i = 0; i < nc; i++) {

async {

if (LookupOneAC(cs[i], name, addr) == OK) {

if (!seen_first) {

seen_first = true;

first_addr = *addr;

} else {

assert(*addr == first_addr);

}

}

}

}

} finish;

return OK;

}

Figure 2. Querying a set of name servers concurrently,

checking that they all return the same result.

plete without needing to block, then the software behaves as

though the AC extensions were removed. Second, a “syn-

chronous elision” property: removing the AC constructs

leaves a correct program using ordinary synchronous opera-

tions. Conversely, taking a synchronous program and adding

these constructs produces a program using asynchronous

IO. We believe both properties are valuable in simplifying

the incremental adaptation of existing applications to use

asynchrony (although, of course, care is still needed to de-

termine exactly which IO requests can be issued at the same

time).

In this section we focus on examples based on message

passing on Barrelfish. In this setting, the AC send/receive op-

erations block until an outgoing message has been buffered

in a channel, or until an incoming message has been removed

from a channel. Unlike the message passing operations in

languages such as CSP [17], the AC send/receive operations

do not synchronize with one another. Channels operate be-

tween pairs of processes in a single machine. They provide

reliable, ordered delivery of messages. The sole kind of fail-

ure is that a channel is abruptly disconnected when the pro-

cess on one end terminates without closing the channel; this

failure is signaled out-of-band to the other process, so error

handling code does not feature in the examples here.

It is straightforward to write functions such as LookupAC

from the introduction: synchronous message passing avoids

the complexity of callback-based interfaces. However, it

also loses the benefits: we can no longer perform multiple

send/receive operations concurrently, we can no longer per-

form computation while waiting for IO operations to com-

plete, and we cannot abandon waiting for an IO operation

once we have started it.

AC addresses the problems by providing the async and

do..finish constructs to allow multiple IO operations to

be issued (Section 2.1), and providing the cancel construct

for block-structured cancellation of waiting (Section 2.2).

2.1 The async and do..finish Constructs

The async and do..finish constructs provide a mech-

anism to switch away from an operation if it blocks, and to

resume its execution after it unblocks. Figure 2 gives an ex-

ample, expanding the earlier LookupAC function to consult

a series of servers and to report an error if the results dif-

fer. The LookupOneAC function performs a single lookup,

returning the resulting address. The LookupAllAC func-

tion takes an array of channels, and makes a series of calls

to LookupOneAC to perform each lookup. The async

within the loop indicates that execution can continue to the

next iteration if a given LookupOneAC call blocks, and

the do..finish indicates that execution must block at

finish until all of the async work is done. The example

satisfies the synchronous elision property: if the new con-

structs are ignored, then it becomes a simple sequential look

up on each server in turn.

There are a number of design choices:

Starting work asynchronously. First, what code runs when

reaching a statement async S—e.g., S itself, or the contin-

uation of the async S statement (as in AME [19]), or are

they interleaved (as in X10 [7])? In AC, execution proceeds

immediately into S, without introducing parallel execution.

This feature follows both from the serial elision property,

and from our conceptual desire to keep separate the support

for asynchrony and parallelism.

A consequence of this design choice is that, in Figure 2,

the code inside the async statement can simply read i to

obtain the channel to work on: the code inside the async

statement runs directly at the start of each loop iteration

before i is modified by the next execution of the loop header.

The example also exploits the fact that async does not

introduce parallelism: when LookupOneAC returns, there

is no need for synchronization on the accesses to the local

variables result, first result, or seen first. We

do not need, for instance, to introduce locking on these

variables, or to use futures to communicate values from

LookupOneAC to its caller.

If a local variable is declared within an async statement,

then it is private to each invocation of this statement (unlike

the example in Figure 2 where the variables are shared be-

tween the invocations of the async statements).

Blocking within asynchronous work. The next design

choice is what happens when code within async S blocks.

In AC, when S first blocks, execution resumes at the con-

tinuation of the async statement. In this respect async

can be seen as “catching” the blocking of the code within it,

and providing the surrounding code with an opportunity to

start additional IO operations, or to do computation instead.

In Figure 2, the continuation of the async statement is the

loop header which proceeds to the next iteration.

When calling a function that might block, the program-

mer needs to anticipate the possibility that other code may



int LookupFirstAC(NSChannel_t *cs[],

int nc, char *name,

int *addr) {

bool seen_first = false;

queries: do {

for (int i = 0; i < nc && !seen_first; i++) {

async {

if (LookupOneAC(cs[i], name, addr) == OK) {

seen_first = true;

cancel queries;

}

}

}

} finish;

return (seen_first ? OK : CANCELLED);

}

Figure 3. Querying a set of name servers concurrently, and

returning the first reply.

run before the callee returns. We follow a convention that

all possibly-blocking functions have an AC suffix on their

name. This convention is true for primitive send/receive op-

erations, and for examples such as LookupAllAC. Follow-

ing this convention ensures that a caller is aware that execu-

tion might switch to elsewhere in the thread while waiting.

For example, in Figure 2, the value of local variable i may

be updated while a call to LookupOneAC is blocked, so if

the original value is needed then it should be saved before

the call.

Our convention of highlighting AC operations corre-

sponds to rules from “atomic by default” programming mod-

els such as AME [2, 19] and TIC [30] that operations that

are not atomic should include annotations at the function’s

definition, and at each call-site. Our convention could be en-

forced by static checks, if desired. A simple, conservative,

approach would be to issue a warning if an AC function is

called from a non-AC function.

Synchronization. The final design choice is how to syn-

chronize with async operations. The do..finish con-

struct provides this form of synchronization: execution does

not proceed past the do..finish until all of the asyn-

chronous work started inside it has completed. In Figure 2

the do..finish requires that all of the LookupOneAC

calls have finished before LookupAllAC can return. From

the point of view of LookupAllAC’s caller, blocking at

the end of a do..finish is the same as blocking at an

IO operation: the call can be placed within an async, and

other work can be started if the call blocks (e.g., a different

LookupAllAC for some other name).

Rules for starting asynchronous work. An async state-

ment must occur statically within do..finish. It is incor-

rect to write unbalanced code such as:

void StartAsync(int x) { async f(x); }

This design choice follows from our focus on implemen-

tations for systems software in C/C++. With predictable

lifetimes for data used for synchronization: (i) a cactus-

stack [16] can be used, rather than requiring a more general

heap-allocated structure, and (ii) as usual, a callee can safely

access stack-allocated data passed to it, irrespectively of

whether or not any of the calls on the stack are asynchronous.

(CILK has a similar rule in that a function implicitly syn-

chronizes with any parallel work that it has spawned [13].)

Integration with threads. Although async does not in-

troduce parallelism, our implementations are nevertheless

integrated with OS threads. This integration enables scenar-

ios where a multi-threaded server handles connections to dif-

ferent clients in different threads, or where a function starts

a thread explicitly to perform work after the function returns

(such as a variant of StartAsync, above).

The runtime system provides concurrency-control primi-

tives such as mutexes and condition variables. These prim-

itives can be used between pieces of async work in the

same OS thread, or between different OS threads. Blocking

on concurrency-control primitives is handled in exactly the

same way as blocking on IO: the OS thread’s execution can

switch to a different piece of work. This work can either be

the continuation of an enclosing async statement, or it can

be a piece of work that has become unblocked. Work retains

affinity to the OS thread that started it. The primitive mes-

sage send/receive operations are themselves thread-safe.

2.2 Cancellation

The async and do..finish constructs let the program-

mer start multiple IO operations, and they let the program-

mer overlap computation with communication. However,

these constructs do not recover all of the expressiveness

of the low-level callback-based APIs; in particular, we also

wish to be able to stop waiting for an IO operation once we

have started it.

AC provides a cancel command to allow a program to

stop waiting for an IO operation. Cancellation is somewhat

analogous to thread interruption in Java: it causes operations

that are blocked on IO to be unblocked.

Figure 3 shows how cancellation can be used to write

a LookupFirstAC function that queries a set of name

servers, returns the first response, and then cancels the re-

maining queries: the loop is within a do..finish la-

beled “queries”, and a cancel queries command

is executed when the first response is received. Cancella-

tion causes any blocked LookupOneAC calls within the

do..finish to become unblocked, and then to return

CANCELLED. The do..finish block behaves as usual:

once all of the async work started within it has finished,

execution can proceed to the end of LookupFirstAC.

When used with a label, cancel must occur statically

within the do..finish block that the label identifies.

If cancel is used without a label then it refers to the

closest statically enclosing do..finish block. It is an

error for cancel to occur without a statically enclosing

do..finish block This requirement makes it clear ex-

actly which block of operations is being cancelled: one can-



int LookupWithTimeoutAC(NSChannel_t *cs[],

int nc, char *name,

int *addr, int t) {

int result;

timeout: do {

async {

result = LookupFirstAC(cs, nc, name, addr);

cancel timeout;

}

async {

SleepAC(t);

cancel timeout;

}

} finish;

return result;

}

Figure 4. Adding a timeout around an existing AC function.

not call into one function and have it “poison” the caller’s

function unexpectedly by using cancellation internally.

Semantics of cancellation. Care is needed when cancella-

tion involves operations with side-effects. Even for a “read-

only” operation such as LookupOneAC, there is a question

of the state of the channel after cancellation. For example,

what will happen if cancellation occurs after a message has

been sent, but before a response has been received? What

will happen if a response subsequently arrives—can it be

confused with the response to a different message?

Both on Barrelfish and on Microsoft Windows, we follow

a convention that we term “exact cancellation”: upon can-

cellation then either (i) a call returns CANCELLED, without

appearing to perform the requested operation, or (ii) the op-

eration is performed and the function returns OK. In particu-

lar, an OK result may be seen, even after executing cancel,

if an IO operation was completed by a device concurrently

with cancellation being requested by software.

This convention represents a division of work between

the application programmer and the implementer of the IO

library: the IO library guarantees exact cancellation in its

own functions, but the application programmer is responsi-

ble for providing exact cancellation in the functions that they

write. The programmer must shoulder this responsibility be-

cause the correct behavior depends on the semantics of the

operations that they are writing—e.g., whether or not a com-

pensating operation must be performed and, if so, exactly

what.

To allow compensating code to be written without it-

self being cancelled, AC lets functions be marked “non-

cancellable” and, on Barrelfish, we provide non-cancellable

variants of all of the message passing primitives. In Sec-

tion 4 we show how these non-cancellable primitives are

themselves implemented over the AC runtime system.

Composable cancellation. Consider the example in Fig-

ure 4 of adding a timeout to a LookupFirstAC call. The

first async starts the LookupFirstAC request. The sec-

ond async starts a timer. Whichever operation completes

first attempts to cancel the other. This block-structured ap-

proach lets programs use cancellation in a composable way:

the cancellation triggered in LookupWithTimeoutAC

propagates into both async branches (and recursively into

their callees, unless these are non-cancellable).

Unlike systems that target cancellation requests at indi-

vidual operations, AC lets a caller cancel a set of operations

without being able to name them individually.

Note that, in the LookupWithTimeoutAC function,

the return value is always taken from LookupFirstAC.

There are three cases to consider in checking that this re-

turn value is correct. First, if LookupFirstAC returns

OK, then exact cancellation semantics mean that the lookup

has been performed and the result can be passed back as

usual. Second, if the SleepAC timeout expires and can-

cels LookupFirstAC, then the resulting CANCELLED re-

turn value is correct. Finally, if LookupWithTimeoutAC

is itself cancelled by its caller, then the result of the call

to LookupFirstAC determines the overall result of the

LookupWithTimeoutAC operation.

3. Operational Semantics

In this section we define an operational semantics for a core

language modeling async, do..finish and cancel

(Figure 5). The aim is to define precisely their interaction.

For instance, exactly when execution can switch between

one piece of code and another, and exactly how execution

proceeds at the point when a cancel command is executed

(e.g., if new IO is subsequently issued, or if further async

commands are run).

We start from a simple imperative language with global

mutable variables. We model IO via send/recv operations

on message channels. The semantics of message channels

(which we define below) are based on those of the Barrelfish

OS. For simplicity, we treat only the special case of cancel

without a label. Since we focus on the behavior of the AC

constructs, we keep the remainder of the language simple:

we omit functions; channels carry only integer values; all

names are global; and variable names are distinct from chan-

nel names.

The constructs for boolean conditionals BExp and nu-

merical expressions NExp are conventional. The symbol x
ranges over variable names, r ranges over message channel

names, and v ranges over values. A store σ is a mapping

from variable names to values, and a buffer state β is a map-

ping from channel names to lists of values that represent a

channel’s buffered contents.

Commands. C and D range over commands. Many are

conventional: skip, assignment, sequencing, conditionals,

and while.

The command async C models the async construct.

The command pool f CS generalizes the do..finish

construct, representing a “pool” of commands (multi-set

CS ) that are eligible to continue within the do..finish.

The flag f indicates whether the do..finish is active, or

whether it has been cancelled. The source construct do C



Definitions
b ∈ BExp = . . .

e ∈ NExp = . . .

x ∈ Var

r ∈ Chan

v ∈ Value = . . .

σ ∈ Store = Var 7→ Value

β ∈ Buffers = Chan 7→ [Value]

E = [ ]
| E ; C
| pool f E ::CS

EC = EC; C
| pool ACTV EC::CS

| pool CNCL E ::CS

C, D ∈ Com = F

| x := e

| C; D
| if b then C else D

| while b do C

| async C

| pool (ACTV | CNCL) CS

| cancel

F ∈ FinalCom = skip

| try IO else D

| IO

IO ∈ IOCom = send e to r

| recv x from r

Top-level transitions

〈σ, β, C〉 → 〈σ′, β′, C′〉
〈σ, , pool f CS〉 ⇒ 〈σ′, , C′〉

〈σ, β, pool f CS〉 → 〈σ′

, β, C
′〉

(T-Eval)

β(r) = vs pushleft(σ(e), vs, vs ′)

〈σ, β, E [ send e to r ]〉 → 〈σ, β[r 7→vs
′], E [ skip ]〉

(T-Send)
β(r) = vs popright(vs, vs ′, v)

〈σ, β, E [ recv x from r ]〉 → 〈σ[x7→v], β[r 7→vs
′], E [ skip ]〉

(T-Recv)

〈σ, β, E [ IO ]〉 → 〈σ′, β′, E [ skip ]〉

〈σ, β, E [ try IO else D ]〉 → 〈σ′

, β
′

, E [ skip ]〉
(T-Try-IO) 〈σ, β, EC[ try IO else D ]〉 → 〈σ, β, EC[ D ]〉 (T-Try-Cancel)

Big-step evaluation of commands

〈σ, pool f CS , C〉 ⇒ 〈σ′, pool f ′ CS ′, C′〉
F ∈ FinalCom

〈σ, p, F 〉 ⇒ 〈σ, p, F 〉
(Final) 〈σ, p, x := e〉 ⇒ 〈σ[x7→σ(e)], p, skip〉 (Assign)

〈σ, p, C〉 ⇒ 〈σ′, p′, skip〉 〈σ′, p′, D〉 ⇒ 〈σ′′, p′′, D′〉

〈σ, p, C; D〉 ⇒ 〈σ′′

, p
′′

, D
′〉

(Seq-1)
〈σ, p, C〉 ⇒ 〈σ′, p′, C′〉 C′ 6= skip

〈σ, p, C; D〉 ⇒ 〈σ′

, p
′

, C
′; D〉

(Seq-2)

σ(b) = true 〈σ, p, C〉 ⇒ 〈σ′, p′, C′〉

〈σ, p, if b then C else D〉 ⇒ 〈σ′

, p
′

, C
′〉

(If-1)
σ(b) = false 〈σ, p, D〉 ⇒ 〈σ′, p′, D′〉

〈σ, p, if b then C else D〉 ⇒ 〈σ′

, p
′

, D
′〉

(If-2)

σ(b) = true 〈σ, p, C;while b do C〉 ⇒ 〈σ′, p′, C′〉

〈σ, p, while b do C〉 ⇒ 〈σ′

, p
′

, C
′〉

(While-1)
σ(b) = false

〈σ, p, while b do C〉 ⇒ 〈σ, p, skip〉
(While-2)

〈σ, p, C〉 ⇒ 〈σ′, p′, skip〉

〈σ, p, async C〉 ⇒ 〈σ′

, p
′

, skip〉
(Async-1)

〈σ, pool f CS , C〉 ⇒ 〈σ′, pool f ′ CS ′, C′〉 C′ 6= skip

〈σ, pool f CS , async C〉 ⇒ 〈σ′

, pool f
′

C
′::CS

′

, skip〉
(Async-2)

〈σ, p, pool f ∅〉 ⇒ 〈σ, p, skip〉 (Pool-1)
〈σ, pool f CS , C〉 ⇒ 〈σ′, pool f ′ CS ′, C′〉 C′ 6= skip

〈σ, p, pool f C::CS〉 ⇒ 〈σ′

, p, pool f
′

C
′::CS

′〉
(Pool-2)

〈σ, pool f CS , C〉 ⇒ 〈σ′, pool f ′ CS ′, skip〉 〈σ′, p, pool f ′ CS ′〉 ⇒ 〈σ′′, p′′, C′′〉

〈σ, p, pool f C::CS〉 ⇒ 〈σ′′

, p
′′

, C
′′〉

(Pool-3)

〈σ, pool f CS , cancel〉 ⇒ 〈σ, pool CNCL CS , skip〉 (Cancel)

Figure 5. Operational semantics.

finish is syntactic sugar for pool ACTV {C} and, intu-

itively, the multi-set CS is used to accumulate asynchronous

work that is started within a given do..finish. The com-

mand cancel triggers cancellation of the enclosing pool.

The command send e to r sends the value of expres-

sion e on channel r. The command recv x from r re-

ceives a value from channel r and stores it in variable x. The

send/recv operations model non-cancellable IO. Can-

cellable IO is modeled by a try IO else D command

where IO ranges over send/recv operations. D is a can-

cellation action which is executed if the IO operation is can-



celled. D might, for instance, update a variable to indicate

that cancellation has occurred.

Finally, we require that a program initially has the form

pool ACTV {C}. This requirement ensures that the notion

of “enclosing pool” is always defined within the body of the

program C.

Top-level transitions. We define a transition relation → be-

tween states 〈σ, β, C〉. We call these “top-level transitions”,

and each step either models the execution of a piece of C
until it next blocks, or it models an IO operation or the can-

cellation of an IO operation. Execution therefore proceeds as

a series of → transitions, interspersing computation and IO.

The rule (T-Eval) models execution of a command via the

big-step relation ⇒ (defined below). Note that the rule takes

the entire program as a command, rather than extracting

part of it from a context. The rules ensure that the top-level

command is either a pool (if execution is not yet complete),

or that it has been reduced to skip (in which case no further

applications of (T-Eval) can occur). The states for the ⇒
transitions include a “current pool” component in place of

the message buffers β. In the hypothesis of (T-Eval) we leave

the current pool blank (“ ”) because that component of the

state is not accessed when the command itself is a pool, as in

the case of (T-Eval). Formally, the blank “ ” can be replaced

with an arbitrary pool (even two different pools on the two

sides of the hypothesis).

The remaining four top-level transition rules model IO

and cancellation of IO. We define these rules in terms of

execution contexts E and cancelled-execution contexts EC.

Within an ordinary execution context, the hole [ ] can oc-

cur on the left hand side of sequencing, and at any com-

mand within a pool (we write C::CS to decompose a pool

by selecting an arbitrary element C from it, leaving the re-

mainder CS ). Within a cancelled-execution context, the hole

must occur within a cancelled pool (either directly, or with

intermediate non-cancelled pools).

(T-Send) selects a send command in an execution con-

text, and pushes the value being sent onto the left hand end

of the message buffer named by r. We define the relation

pushleft(e, vs, vs ′) to be true iff the list vs ′ is obtained by

pushing e on the left hand end of vs . (T-Recv) selects a recv

command in an execution context, and removes the value be-

ing received from the right hand end of the message buffer

named by r. The relation popright(vs, vs ′, v′) is true iff the

list vs can be decomposed by taking v′ from the right and

leaving vs ′. Hence, this rule can apply only when vs is non-

empty. (T-Try-IO) allows an IO command to be performed

within a try statement in an execution context. The try

is discarded if the IO completes. Finally, (T-Try-Cancel) al-

lows a try IO else D command to be reduced to D if it

occurs within a cancelled-execution context.

Evaluation of commands. We define a big-step struc-

tural operational semantics for commands. A transition

〈σ, p, C〉 ⇒ 〈σ′, p′, C ′〉 means that command C en-

closed by pool p with variable state σ evaluates to leave

command C ′, with modified pool p′ and state σ′. The pool

may be modified, for instance, by adding commands to it if

C spawns asynchronous work that blocks.

The ⇒ transition relation embodies a big-step semantics:

it models the complete execution of C until it is finished

(C ′ = skip), or until C next blocks. This design cap-

tures our decision to keep the AC constructs for controlling

asynchrony separate from constructs for parallel execution:

a small-step semantics would need a mechanism to prevent

interleaving between multiple pieces of work that have been

started asynchronously. (An earlier small-step version of our

semantics attempted to control interleaving by marking a

designated “active command”; however, it was cumbersome

to ensure that the marker was moved in a way that provided

the serial elision property.)

In the definition of ⇒, the rule (Final) handles skip,

try, send, and recv. No further evaluation is possible for

these “final” commands: execution is complete in the case of

skip, and has blocked in the other cases. The rule (Assign)

handles assignment, by updating the state and leaving skip.

The rule (Seq-1) handles sequencing when the first com-

mand in the sequence evaluates to skip. The rule (Seq-2)

handles sequencing when the first command blocks; the se-

quence as a whole blocks. The rules (If-1), (If-2), (While-1)

and (While-2) are conventional.

The rule (Async-1) handles async commands that run

to completion: async C runs to completion if C does.

This rule reflects our design decision to run the body of an

async command before running its continuation, and helps

to provide the serial elision property. The rule (Async-2)

handles async C commands where C blocks: C runs as far

as C ′, this remainder is then put into the pool, and async C
as a whole evaluates to skip instead of blocking.

There are three rules for pools. The first (Pool-1) reduces

a pool that has emptied to skip. The second (Pool-2) takes

a command C from a pool and evaluates C until it blocks

(leaving C ′ 6=skip) and is put back into the pool. The third

(Pool-3) takes a command C from a pool, evaluates it to

completion (leaving skip), and then continues evaluating

the modified pool. Collectively, these rules allow a top-level

transition under (T-Eval) to execute any of the commands

from within a set of nested pools.

The final rule is (Cancel); a cancel command simply

sets the flag on the current pool to be CNCL.

Properties. We briefly state properties of the semantics

(for brevity, we omit the proofs, which are typically routine

inductions on derivations):

— If 〈σ, p, pool f CS 〉 ⇒ 〈σ′, p′, C ′〉 then p = p′.
That is, evaluating one pool has no effect on the surround-

ing pool, either in terms of cancellation or the addition or

removal of commands. This property is why we omit a sur-

rounding pool in the hypothesis of (T-Eval).



— Let ae(C) be the asynchronous elision of command

C, applied recursively to commands and leaving them un-

changed except that ae(async C) = ae(C). If com-

mands CS do not include send or recv operations and

〈σ, β, pool f CS 〉 → 〈σ′, β′, C ′〉 then there is a transi-

tion 〈σ, β, ae(pool f CS )〉 → 〈σ′, β′, ae(C ′)〉. That is,

the use of async does not affect the behavior of a program

that does not block; this follows our informal serial elision

property from the introduction.

— Let ce(C) be the cancellation elision of command

C, applied recursively to commands and leaving them

unchanged except that ce(cancel) = skip and that

ce(pool f CS ) = ce(pool CNCL CS ). If commands

CS do not include try (i.e., they are non-cancellable) and

〈σ, β, pool f CS 〉 → 〈σ′, β′, C ′〉 then there is a transi-

tion 〈σ, β, ce(pool f CS )〉 → 〈σ′, β′, ce(C ′)〉 That is,

the use of cancel does not affect the behavior of a pro-

gram in which the IO operations are non-cancellable.

4. Implementation

In this section we discuss our implementations of AC. We

discuss how the core language features are built via a mod-

ified compiler (Section 4.1) or via C/C++ macros (Sec-

tion 4.2). Finally, we show how to integrate callback-based

asynchronous IO with AC (Section 4.3).

4.1 Clang/LLVM Implementation

Our first implementation is based on the Clang/LLVM

tool-chain (v2.7). We de-sugar async code blocks into

async calls to compiler-generated functions. We do this

de-sugaring by translating the contents of the async state-

ment into an LLVM code block (a form of closure added in

LLVM as an extension to C).

At runtime, the implementation of do..finish and

async is based on a cactus stack with branches of the stack

representing async operations that have started but not yet

completed. In our workloads, many async calls complete

without blocking (e.g., because a channel already contains a

message when a receive operation is executed). Therefore,

we defer as much bookkeeping work as possible until an

async call actually does block (much as with lazy task

creation [26] in which the creation of a thread is deferred

until an idle processor is available). In particular, we do not

update any runtime system data structures when making an

async call, and we allow the callee to execute on the same

stack as the caller (rather than requiring a stack switch). To

illustrate this technique, consider the following example:

void main(void) {

do {

async as1();

} finish;

}

Figure 6(a) shows the initial state of the runtime sys-

tem within the do..finish block. Associated with each

thread is a run queue of “atomic work items” (AWIs), which

Thread
Run queue
Current FB ACTV

Finish block (FB)

Count = 0
Completion AWI

Enclosing FB

First Last

main
Stack 1

(a) Initial execution within main: the “FB” structure is used

to implement a do..finish block and is stack-allocated.

Thread
Run queue
Current FB ACTV

Finish block (FB)

Count = 0
Completion AWI

Enclosing FB

First Last

main
Stack 1

as1

(b) Within an async call to as1: the existing stack is used.

Thread
Run queue
Current FB ACTV

Finish block (FB)

Count = 1
Completion AWI

Enclosing FB

First Last

main
Stack 1

as1 AWI1

Stack 2

stub

(c) If as1 blocks then main’s execution is resumed on a fresh

stack (Stack 2), and the return address from as1 is updated.

Thread
Run queue
Current FB ACTV

Finish block (FB)

Count = 1
Completion AWI

Enclosing FB

First Last

main
Stack 1

as1 AWI1
stub

(d) Execution reaches the end of the do..finish.

Thread
Run queue
Current FB ACTV

Finish block (FB)

Count = 1
Completion AWI

Enclosing FB

First Last

main
Stack 1

as1 AWI1
stub

(e) AWI1 is resumed, and added to the run queue.

Thread
Run queue
Current FB

main
Stack 1

ACTV

Finish block (FB)

Count = 0
Completion AWI

Enclosing FB

First Last

(f) The do..finish block runs to completion.

Figure 6. Runtime system data structures. Changes are

shaded at each step.

represent pieces of work that are ready to run when the

thread becomes idle. Concretely, an AWI is simply a saved

program counter, a stack-pointer, and a thread ID for the

thread that created the AWI. To reduce locking overheads,

the run queue is structured as a pair of doubly linked lists,

one that is accessed without concurrency-control by the

thread itself, and a second that is accessed by other threads

(e.g., when an AWI increments a semaphore, then the thread

running that AWI may need to the access the run queue for

an AWI that was blocked on the semaphore).

In addition to the run queue, each thread has a “current

FB” that identifies the do..finish block that it is within.

Each FB (Finish Block) structure is stack-allocated in the



frame where the do..finish block is entered; the se-

mantics of do..finish mean that this function can re-

turn only once the block is complete. The FB has a can-

celled/active flag (initially ACTV), a pointer to the FB struc-

ture for the dynamically enclosing FB, a count of the number

of asynchronous calls that have been started but not yet fin-

ished, a reference to a special “completion AWI” (which we

describe below), and a doubly-linked-list holding (i) func-

tions to execute if the FB is cancelled, and (ii) FBs for any

do..finish blocks dynamically nested within this one.

In the figure, the list is empty.

In the example, execution starts with an async call to

as1 (Figure 6(b)). A new stack frame is allocated in the

usual way; if as1 were to return normally then execution

would simply continue after the asynchronous call.

However, if as1 blocks (Figure 6(c)), then the runtime

system (i) increments the count of blocked items in the

enclosing FB, (ii) allocates a new AWI representing the

blocked work, placing this AWI at the end of the stack frame

for as1, and (iii) walks the stack to find the closest enclosing

call site (if any) corresponding to an async call whose

continuation has not been resumed. A compiler-generated

table of return addresses is used to identify async calls.

If there is an async call then the return address from the

callee’s stack frame is rewritten to go to a stub function (de-

scribed below), and a new stack is allocated for the caller.

In our implementations we reserve 1MB of virtual address

space for each stack, and within this space we lazily allo-

cate 4KB pages of physical memory using a guard page. In

the figure, Stack 2 is allocated and execution resumes within

main on the new stack. To allow execution to move between

stacks, a new calling convention is used for asynchronous

calls: (i) all registers are treated as caller-save at an asyn-

chronous call site, and (ii) a frame pointer is used for all

functions containing asynchronous calls. The first rule al-

lows execution to resume after the call without needing to

recover values for callee-save registers, and the second rule

allows the resumed caller to execute on a discontiguous stack

from the original call (e.g., in Figure 6(c)) by restoring the

original frame pointer but using a fresh stack pointer.

If a function blocks when there are no async calls then

execution continues by resuming an AWI from the current

thread’s run queue. If the run queue itself is empty then exe-

cution blocks for an asynchronous IO operation to complete.

In the example, execution continues in main and reaches

the end of the do..finish (Figure 6(d)). At this point the

runtime system checks whether (i) the FB has any async

calls which are not yet complete (i.e., count 6=0), and (ii) if

the count is zero, whether execution is on the original stack

that entered the do..finish. In this case the count on the

current FB is non-zero, so execution blocks.

Figure 6(e) shows the situation when the IO performed

within as1 has completed: the suspended AWI is added

to the run queue, and is resumed by the thread. The func-

// Scheduling

void Suspend(awi_t **xp);

void SuspendUnlock(awi_t **xp, spinlock_t *l);

void Schedule(awi_t *x);

void Yield();

void YieldTo(awi_t *x);

// Cancellation

bool IsCancelled();

void AddCancelItem(cancel_item_t *ci, fn_t fn, void *arg);

void RemoveCancelItem(cancel_item_t *ci);

Figure 7. Low-level API for integrating asynchronous IO

operations.

tion as1 then completes, and returns to the “stub” func-

tion linked to the stack in Figure 6(c). The stub function

re-examines the count field to check whether as1 was the

last outstanding async function for that FB: in this case the

count is decremented to 0, and execution resumes outside

the do..finish back on Stack 1 (Figure 6(f)).

The completion AWI field is not used in this example.

Its role is to ensure that execution leaves a do..finish

block on the same stack that entered it (in this case Stack 1).

If the work running on the original stack finishes when the

current FB’s count is still non-zero then the completion AWI

is initialized for the work immediately after the finish.

Then, when the count reaches zero on another stack, execu-

tion is transferred to the completion AWI and hence back to

the original stack.

4.2 Macro-Based Implementation

In addition to our compiler-based implementation, we have

developed an implementation based on C/C++ macros that

exploits existing extensions for defining nested functions.

This implementation lets us use AC on platforms that are

not supported by LLVM (e.g., the Beehive FPGA-based

processor [34]). Comparing the two implementations also

lets us assess the advantages and disadvantages of including

language features to support asynchronous IO.

There are two differences from the Clang/LLVM imple-

mentation: First, syntactically, the macro-based implemen-

tation uses ASYNC(X) to express an async statement con-

taining statements X, DO FINISH(X) for a do..finish

containing X, and DO FINISH (lbl,X) for a block with

label lbl. The DO FINISH macros define blocks that start

and end with calls to the AC runtime system. The ASYNC

macro defines a nested function that contains the contents

of the async statement, and then it calls the AC runtime

system to execute the nested function.

The second difference is that the macro-based imple-

mentation does not produce the compiler-generated tables

to let us walk the stack, when blocking, to identify async

calls. We therefore investigated two alternative approaches

at async calls: (i) eagerly allocating a stack when making

the async call; or (ii) pushing an explicit marker onto the

stack during an async call, to enable lazy allocation of the

stack only if the async call blocks. Eager allocation is rel-

atively simple to implement, however, as we show in Sec-
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Figure 8. Integrating AC with callback-based messages.

tion 5, it incurs a performance cost of around 110 cycles

per async call. Macro-based lazy allocation allows stack

allocation itself to be made lazy, but still requires some ea-

ger bookkeeping to initialize an AWI for the call’s continua-

tion, and it requires an additional level of indirection on each

async call. It adds around 30 cycles overhead per async

call, when compared with the compiler-integrated lazy im-

plementation.

4.3 Integrating Callback-Based IO with AC

The AC runtime system provides a set of functions through

which asynchronous IO operations interact with the new

language constructs; these provide a way to adapt existing

callback-based abstractions to a form where they can be

invoked from AC. Figure 7 shows the operations:

Scheduling. The first set of operations is used to control

scheduling of AWIs. Suspend(xp) ends the current AWI,

and initializes *xp with a pointer to a new AWI for the con-

tinuation of the Suspend call. In practice the AWI is al-

located in the stack frame of the Suspend call, as in Fig-

ure 6(c). SuspendUnlock is the same as Suspend, ex-

cept that a given spinlock is released after blocking (we illus-

trate its use below). Schedule(x) adds the AWI pointed

to by x to the run queue of the thread to which the AWI

belongs. Yield ends the current AWI, and adds the con-

tinuation of the Yield immediately back to the run queue

of the current thread. Finally, YieldTo(x) is a directed

yield: If x belongs to the current thread, then the continu-

ation of YieldTo is put on the run queue, and execution

proceeds immediately to the AWI to which x refers. If x be-

longs to a different thread, then YieldTo(x) is equivalent

to Schedule(x).

Cancellation. The second set of operations in Figure 7 in-

teracts with cancellation. This basic abstraction is a “cancel-

lation item” which is a callback function to be run when can-

cellation is triggered. These callbacks are registered when

cancellable operations are started, and de-registered when

cancellable operations complete. The cancellation items are

stored on the doubly-linked-list held in the FB structure for

the enclosing do..finish block. These callbacks are run

when the cancel statement is executed.

Example. We have developed versions of AC for mes-

sage passing on Barrelfish, and for asynchronous IO more

enum { EMPTY, BH_WAITING,

TH_WAITING, TH_CANCELLED } rx_state;

typedef struct {

spinlock_t spinlock; // Lock to protect other fields

enum rx_state state; // Receiver record state

ac_lock_t bh_lock; // Lock to order BH execution

ac_lock_t th_lock; // Lock to order TH execution

awi_t *rx_awi; // Saved TH context

int addr; // Message payload

} LookupResponse_t;

// Bottom-half function to execute on incoming message:

static void LookupResponseBH(NSChannel_t *c, int addr) {

LookupResponse_t *r = ...;

LockNAC(&r->bh_lock); // Wait for previous BH to complete

SpinlockAcquire(&r->spinlock);

r->addr = addr;

if (r->state == EMPTY) { // No top-half waiting

r->state = BH_WAITING;

SpinlockRelease(&r->delivery_lock);

} else { // Pass control to top-half

YieldTo(r->rx_awi);

} }

// AC top-half function to receive a message:

int LookupResponseAC(NSChannel_t *c, int *addr) {

LookupResponse_t *r = ...;

int result = OK;

// Wait for previous TH to complete

if (LockAC(&(r->th_lock)) == CANCELLED) return CANCELLED;

SpinlockAcquire(&r->spinlock);

if (r->state == EMPTY) { // No BH present: wait

r->state = TH_WAITING;

cancel_item_t ci;

AddCancelItem(&ci, &CancelRecv, r);

SuspendUnlock(&r->rx_awi, &r->spinlock);

// Resumed here after delivery or cancellation

RemoveCancelItem(&ci);

if (r->state == TH_CANCELLED) {

result = CANCELLED; // We were cancelled

goto done;

} }

*addr = r->addr; // Extract message contents

Unlock(&r->bh_lock); // Allow next BH callback

done:

r->state = EMPTY;

SpinlockRelease(&r->spinlock);

Unlock(&(r->th_lock)); // Allow next TH operation

return result;

}

static void CancelRecv(LookupResponse_t *r) {

SpinlockAcquire(&r->spinlock);

if (r->state == TH_WAITING) {

r->state = TH_CANCELLED;

Schedule(r->rx_awi);

} else {

SpinlockRelease(&r->spinlock);

} }

Figure 9. Interfacing Barrelfish callbacks with AC.

generally on Microsoft Windows. For brevity we focus on

receiving a message on Barrelfish, showing how the syn-

chronous AC operation is built over the callback-based in-

terface sketched in the introduction. Other functions follow

a similar pattern.

Figure 8 shows the overall approach. For each message

channel, we record a buffered message and a state. These

are updated by a “bottom-half” function that runs as a call-

back, and a “top-half” function that runs as a blocking AC

operation. The callback waits until the buffer is empty, and



then deposits the next message. The top-half function waits

until a message is available in the buffer.

Figure 9 shows a simplified version of the implementa-

tion (the logic follows the full version, but we use shorter

names, and omit some casts and function parameters). The

LookupResponse t structure provides the buffering. A

spinlock protects access to the other fields. The state field

records whether buffered data is waiting from a bottom-

half function (BH WAITING), whether a top-half function

is blocked waiting for data (TH WAITING), or whether a

top-half function has just been cancelled (TH CANCELLED).

Two locks serialize executions of the top-half and bottom-

half handlers, allowing only one of each kind to execute at

any given time on a given buffer. The rx awi field stores

the saved context when a top-half function waits. The addr

field carries the buffered message payload (in this case the

address returned from the name-service lookup).

LookupResponseBH is the example bottom-half func-

tion. It waits on the bottom-half lock, and then updates the

buffered state. It uses a directed YieldTo to transfer exe-

cution directly to the top-half, if one was waiting.

LookupResponseAC is the example top-half function.

It waits on the top-half lock, consumes a buffered message if

present, and otherwise marks the state as TH WAITING be-

fore suspending itself. If cancellation occurs while the top-

half is waiting, then the CancelRecv function is executed.

This function tests whether or not a message has been de-

livered. If no message was delivered, then CancelRecv

updates the state to TH CANCELLED and then resumes the

top-half code (note that the spinlock is held from within

CancelRecv to the end of the top-half function—ensuring

that the state is reset to EMPTY before the next message can

be delivered).

5. Performance Evaluation

In this section we evaluate the performance of AC. We first

look at microbenchmarks to show the overhead of individ-

ual AC operations (Section 5.1). We then measure the per-

formance of AC using larger examples on Barrelfish and on

Microsoft Windows. On Barrelfish, we use AC in the im-

plementation of a low-level capability management system

(Section 5.2). On Microsoft Windows, we use AC in a series

of IO-intensive applications (Section 5.3).

We use an AMD64 machine with 4 quad-core proces-

sors (Sections 5.1 and 5.2), and an HP workstation with

an Intel Core 2 Duo processor (Section 5.3). All results

use optimized code (-O2). We validated that our modified

compiler’s performance is consistent with the baseline com-

piler and with gcc 4.3.4. Experiments are typically run with

10 000 iterations, using the first 9 000 as warm-up and re-

porting results from the final 1 000. In each case we con-

firmed that this delay avoided start-up effects. We report me-

dian values, and give 5-95%-ile ranges for any results with

significant variance.

5.1 Microbenchmarks

We compared the performance of (i) a normal function call,

(ii) an async call to an empty function, and (iii) an async

call to a function that yields—i.e., blocking, and then imme-

diately unblocking. We examined the Clang/LLVM-based

implementation which uses lazy bookkeeping, and the two

macro-based implementations. The test makes calls in a tight

loop, and we measured the cycles needed per call:

Call Async Yield

Lazy, compiler-integrated 8 10 245

Lazy, macros 8 44 269

Eager, macros 8 120 247

This kind of low-level timing is inevitably affected by the

processor implementation and compilation details: the re-

sults confirm, however, that compiler-integrated lazy book-

keeping allows async to be used with very low overhead

when the callee does not block, and that performing book-

keeping lazily does not harm performance if a callee does

subsequently block. The lazy, macro-based implementation

performs slightly less well than the compiler-integrated im-

plementation. This result reflects an additional level of indi-

rection that the macro-based implementation introduces on

each asynchronous call.

We measured the performance of a ping-pong microbench-

mark between processes on different cores. We used the

compiler-integrated implementation of AC. The results show

the time from sending a message from one core, until the

corresponding response is received back on the same core:

Round trip latency / cycles

Callback-based API 1121

AC one side 1198

AC both sides 1274

AC without YieldTo 1437

MPI (HPC-Pack 2008 SDK) 2780

We compared five implementations. “Callback-based API”

uses the existing Barrelfish callback-based messaging li-

brary. This library provides a callback-based API which

is built over shared memory on conventional systems, and

which is implemented over hardware message passing on

systems such as the Intel SCC [20],

The AC results show the cost of using AC on one or

both sides of the ping-pong test. The difference is less than

15% over the callback-based API. Tracing the code, the se-

quence of operations performed is essentially the same in

the callback-based and AC variants: the use of YieldTo

stitches a bottom-half callback function directly to the

top-half AC receive operation that was waiting. Replacing

YieldTo with a non-directed Schedule leads to a 1437-

cycle total cost. For comparison we also ran an analogous

shared-memory MPI ping-pong test on identical hardware

using Microsoft HPC-Pack 2008, and found it to be over

twice as expensive as AC both sides.
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Figure 10. Capability re-typing benchmark.

5.2 Capability Management on Barrelfish

Our second test uses AC within Barrelfish. The OS uses

capabilities to control access to physical resources. Posses-

sion of a capability on a core confers the right to perform

a set of operations on the underlying resource without syn-

chronization with other cores. The OS nodes use a 2-phase

commit protocol to ensure that management operations on

capabilities are performed in a consistent order across all

cores. This protocol is an ideal usage scenario for AC: it is a

performance-critical part of the OS, where easily understood

and maintainable code is desirable to deal with the complex-

ity.

Figure 10 shows the time to perform a capability opera-

tion. The protocol involves an initiating core sending mes-

sages to all the other cores, waiting for responses, and then

sending a result back to the other cores. The first set of re-

sults, Figure 10(a), show an artificial configuration in which

processes spin without bound while waiting for incoming

messages. This configuration lets us focus on the best-case

performance of different implementations (in practice the

OS would preempt processes when they have no incoming

messages).

We show four implementations. “Seq” uses synchronous

communication: the initiator contacts each other core in turn,

waiting for a response before moving on. The implementa-

tion is simple but performance is poor. “Event” is the exist-

ing Barrelfish implementation using manual stack-ripping: it

comprises 19 callback functions which use 5 different kinds

of temporary data structure. It gives the best performance,

at the cost of code clarity in managing intermediate state.

“Async” uses AC and follows the structure of “Seq” while

adding async statements to interact with each core (it uses

a single function, and no temporary structures). “Batch” uses

AC, but restructures the communication to send a batch of

messages followed by waiting for a batch of responses. Both

of these AC versions perform much better than “Seq” and

scale similarly to “Event”.

In Figure 10(b) we configure the system to preempt pro-

cesses while waiting for incoming messages. Performance

of “Seq” is much worse because a receiver is often not

running when a message arrives (note the log scale). The

“Event”, “Async” and “Batch” implementations are indistin-

guishable: the implementations using AC provide the same

performance as the callback-based implementation, while

avoiding the need for manual stack-ripping.

5.3 IO on Microsoft Windows

We integrated AC with the existing asynchronous IO facili-

ties on Microsoft Windows.

Disk workload. Our first test program is a synthetic disk

workload, modeling the behavior of a software RAID sys-

tem. The test can be configured to use Windows asyn-

chronous IO directly, or to use AC, or to use basic syn-

chronous IO. The test issues random reads to two Intel 25-M

solid-state storage devices (SSDs), configured as RAID0,

each with sustained read throughput of up to 250MB/s (we

ran other workloads, but omit them for brevity because they

showed similar trends in the performance of the different im-

plementations). The AC version uses ReadFileAC, keep-

ing track of the number of requests that have been issued,

and blocking when a limit is reached. Tracking IOs lets us

control the depth of the pipeline of concurrent requests ex-

posed to the disk subsystem. The AIO implementation uses

the callback-based IO interfaces directly; as in the exam-

ple in the introduction, the AIO implementation needs to be

stack-ripped manually.

Figure 11 shows the results for 4k and 64k IO block sizes

respectively. The AC and AIO implementations achieve sim-

ilar throughput. The implementation using synchronous IO

is substantially slower.

We compared the CPU consumption of the AC and AIO

implementations. This experiment forms a “sanity check”

that AC’s throughput does not come at the expense of vastly

greater CPU consumption. For 4k transfers the overhead

ranges from 5.4% to 11.8%, while for 64k transfers we

measured up to 9.8% more CPU cycles (user mode + kernel

mode) used by AC. As the pipeline depth increases the

number of passes through the AC scheduler loop decreases
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because each pass handles multiple completed requests. This

mitigating factor meant that for 64k reads and 1024-request

pipelines, we actually observed a lower CPU cost (-3.7%)

for AC.

Stock quote server. Our final test program is the “stock

quote server” program used to illustrate the features in re-

cent version of the .NET framework for asynchronous pro-

gramming [32]. The server sends one message per second to

a variable number of clients. We ran the server and clients

on separate cores on the same machine. We increased the

number of connections until system limits were reached. We

compared the performance of four single-core server im-

plementations: (i) an AC implementation, (ii) a C imple-

mentation using asynchronous IO, (iii) a C# implementation

using asynchronous IO, and (iv) an F# implementation us-

ing asynchronous IO. The AC, C#, and F# implementations

all avoid stack-ripping; the C implementation is written as

stack-ripped callbacks that run in response to IO completion

events.

Figure 12(a) shows the throughput of the different im-

plementations, measuring the number of clients actually ser-

viced per second, as the number of client connections in-

creases. The AC implementation scales as well as the stack-

ripped AIO implementation: for a server running on a sin-

gle core, both scale to around 18 000 clients (at which point

system limits on network connections are reached). In con-

trast, the F# and C# clients are saturated at around 10 000

and 8 000 clients respectively.

Figure 12(b) shows the CPU consumption of the different

implementations, measuring the milliseconds of CPU time

consumed by the server process per second of elapsed time.

The AC and AIO implementations have similar CPU con-

sumption, less than 1/5 of the consumption of the C# and

F# implementations at 10 000 clients.

We compared the performance of these single-core server

implementations with the performance of a server using

multiple co-operating threads and synchronous IO. The

multi-threaded server saturated at 4 500 clients per core,

substantially less than the 18 000 clients handled by the AC

and AIO implementations. This difference in performance
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Figure 12. Stock-quote server benchmark.

was due to the synchronous IO operations performing more

kernel-mode work than the asynchronous operations.

We examined why the F# and C# implementations differ

in performance from the AC and AIO implementations. All

of these implementations are ultimately built on the same

asynchronous IO interfaces to the OS kernel, and the dif-

ferent performance comes from the user-mode parts of the

implementations. There were two main factors which con-

tributed approximately equally. First, the F# and C# imple-

mentations use heap-allocated temporary data structures to

record information about pending IO operations. Allocating

these adds to pressure on the GC. Second, the F# and C#

implementations rely heavily on “pinning” data buffers in

memory so that the buffers are not moved by the GC. Pin-

ning introduced additional work allocating and de-allocating

the GCHandle structures that are used to pin objects.

6. Related Work

Our techniques build on many areas of related work; we

structure this discussion around (i) frameworks for perform-

ing asynchronous IO, (ii) implementations of abstractions

for parallel programming, (iii) languages based on mes-

sage passing, and (iv) techniques for cancellation of asyn-

chronous IO.

Frameworks for asynchronous IO. The merits of thread-

based and callback-based programming models are fre-

quently revisited. Lauer and Needham observed that partic-

ular forms of these models can be seen as duals: a program

written in one model is essentially identical to a program

written in the other [23]. Ousterhout argued that threads are

a bad idea for most purposes (in terms of using them cor-



rectly, as well as performance) [27]. Adya et al. argued that

the idea of “threads” conflates many related notions and

there is value in using cooperative task management without

manual stack management [3]; AC is inspired by this argu-

ment, and keeps management of asynchronous IO within a

thread separate from management of parallel work. Based

on related arguments, von Behren et al. suggested that many

criticisms of threads were really due to the poor performance

of early implementations [35].

Several techniques simplify asynchronous IO without re-

moving manual stack-ripping. Dabek et al.’s libasync

library helps manage event handlers’ state, and provides

concurrency-control between handlers [9]. Elmeleegy et al.

propose that asynchronous IO interfaces should operate syn-

chronously if a given call can complete immediately [11].

Cunningham and Kohler show how to restructure asyn-

chronous IO interfaces to help link related operations [8].

Our work differs from these in avoiding stack-ripping.

Grand central dispatch (GCD) schedules tasks within

an application over thread pools (http://developer.

apple.com/technologies/mac/snowleopard/

gcd.html). Typically, tasks run to completion and are de-

fined as a form of closure in Objective C. Manual stack-

ripping can be mitigated by nesting one closure within an-

other (capturing the outer closure’s variables).

Several systems allow asynchronous IO programs to

be written without stack-ripping. Protothreads provides a

system for programming embedded systems in a threaded

style [10]. Each “thread” is a single function that is split into

a series of event handlers. Fischer et al. use a more gen-

eral version of this idea in TaskJava [12], allowing callees

to wait for events. A manual annotation causes the TaskJava

compiler to replace a method’s body with a switch statement

enabling it to be restarted at intermediate points; variable

accesses are replaced with accesses to state records in the

heap. Srinivasan and Mycroft use such transformations in

the implementation of Kilim, an actor-based framework for

Java [31]. We modify the runtime system to avoid the need

for this kind of transformation.

Haller and Odersky’s Scala Actors [15] combine thread-

based and event-based programming models; code can block

using a receive operation, or it can register an event

handler using a react operation.

Tame provides a set of C++ abstractions for writing asyn-

chronous IO in a thread-like style [22]. A thread can block

within a function call; the call returns immediately, storing

the contents of designated local variables into heap struc-

tures. Tame provides callback-based synchronization primi-

tives and uses reference counting to manage temporary stor-

age. CLARITY supports a thread-like model with nonblock-

ing calls and a monitor-like synchronization mechanism [6].

As with an async call, execution proceeds to the continua-

tion of a nonblocking call if the callee blocks. We integrate

cancellation, and provide block-structured synchronization.

CPC [21] uses a compiler that transforms code to con-

tinuation passing style (CPS) to support large numbers of

threads: threads comprise a dynamic chain of heap-allocated

suspension records. As in AC an IO library provides integra-

tion with asynchronous IO operations exposed by the OS.

AC avoids the need for CPS transformation, and adds lan-

guage constructs for creating, synchronizing, and cancelling

asynchronous work.

Li and Zdancewic combine callback-based and thread-

based communication abstractions in GHC Haskell [25].

Thread-based operations are written in a monadic style to

provide sequencing. A scheduler forces each thread’s work

to be evaluated up to the point of the next IO operation.

Vouillon describes Lwt, an implementation of cooperative

threads for OCaml [37]. Lwt provides primitive threads that

perform individual AIO operations, along with a bind op-

erator to chain these primitives together.

Syme et al. provide an “asynchronous modality” in the

F# language [32]. A value of type Async<T> is a compu-

tation that can be run asynchronously and produce a value

of type T. Control-flow syntax from the core F# language

can be used to structure these asynchronous computations.

Version 4 of the Microsoft .NET Framework supports asyn-

chronous IO without manual stack-ripping (http://www.

microsoft.com/events/pdc/ session FT09). Func-

tions that execute asynchronously must include an async

modifier in their signature and have a Task<T> return type;

their execution can then be suspended and resumed using

heap-allocated temporary objects for the suspended state. In

contrast, AC allows code performing asynchronous IO to be

compiled as usual and uses temporary data directly on the

stack for managing asynchronous work; this leads to better

performance, as we illustrated in Section 5.

Threads and parallel programming Although we keep the

AC abstractions separate from those for expressing paral-

lelism, our design and implementation builds on techniques

for parallel programming. We gain concurrency-control sim-

plifications by applying these techniques to computations

within a single thread (e.g., we keep information about the

continuations of async calls implicit in a thread’s stack be-

cause these are accessed only by that thread itself). Mohr

introduced the use of lazy task creation [26], deferring cre-

ation of a new thread to execute a computation until a spare

processor is available. Our Clang/LLVM implementation de-

fers creating a separate stack until a callee blocks. Gold-

stein introduced a taxonomy of techniques for lightweight

threads [14]. Our handling of async calls is akin to “lazy

disconnect” in Goldstein’s terminology. CILK [13] imple-

mentations have used separate clones of functions to include

or omit synchronization; we do not use cloning because our

sequential model reduces the amount of synchronization in-

volved. As in AC, CILK-4 uses a cactus-stack. CILK-5 uses

heap-allocated frames.



StackThreads/MP provides a form of async call in

which the callee can be stolen by an idle processor [33].

Stealing is co-operative (the victim is responsible for sus-

pending the current work of the callee). StackThreads/MP

multiplexes frames from multiple threads over a single stack;

new frames are allocated at the top of the stack, but holes

that appear are not filled. As in AC, the Capriccio system of

von Behren et al. [36] multiplexes IO-intensive workloads

on a single OS thread. It provides a traditional thread-based

programming model whereas AC provides block-structured

constructs for synchronizing and cancelling asynchronous

IO.

The X10 language provides async and finish con-

structs, which partly inspired our design [7]. In X10, async

creates work for parallel processors. X10’s constructs would

not provide, for example, the serial elision property of AC.

Lee and Palsberg define an operational semantics for Feath-

erweight X10 [24] using small-step transitions that can inter-

leave work from parallel threads. AME provides a program-

ming model based on serializable atomic actions. Executing

async C creates a new atomic action that will run C after

the current atomic action [19].

Sivaramakrishnan et al. describe a form of lightweight

threading known as “parasitic threads” [29]. Parasitic threads

are multiplexed over host threads, with multiple parasites us-

ing the same host stack at the same time. A combination of

static analysis and dynamic checking is used to prevent col-

lisions between frames from different parasites. We could

apply these techniques to further reduce the cost of allocat-

ing stacks in AC.

Message-based languages. Hoare’s CSP [17] has inspired

numerous language designs. Unlike CSP, our core language

provides buffered send/receive operations as primitives and

omits an “alt”-style operation to send/receive on exactly one

of a set of alternatives. Our design reflects the primitives

available in the OSes that we target. Typical OS interfaces

do not provide exactly-one semantics because multiple re-

quests could complete concurrently on different devices. A

programmer using AC can build an “alt”-style operation via

an additional software layer.

As in AC, the Alef [39] and Go (golang.org) lan-

guages both provide message passing operations within an

imperative setting. Alef supports cooperative scheduling of

coroutines as they block on communication operations. Go

introduces a “goroutine” abstraction; these are multiplexed

over OS threads (so different routines can run in paral-

lel), but a segmented-stack implementation is used. AC fo-

cuses just on structuring asynchronous IO operations within

a single thread, rather than using multiple OS threads. This

choice lets us retain a sequential programming model.

Concurrent with our work, Ziarek et al. developed a sys-

tem for composable asynchronous events [40], building on

the first-class event abstraction of Concurrent ML [28].

Ziarek et al.’s asynchronous events encapsulate the im-

plicit thread creation associated with an asynchronous ac-

tion within an event structure, thus enabling composable

construction of asynchronous protocols.

Cancellation. AC’s block-structured approach to cancella-

tion is distinct from previous work. Modula-2+ [5] provides

an “alert” mechanism that causes an exception to be raised in

another thread if that thread is blocked at a synchronization

operation. Java provides a similar mechanism. POSIX de-

fines a notion of “cancellation points” at which one thread’s

work may be cancelled by another thread [1]. Typically,

these are blocking system calls. In addition, POSIX asyn-

chronous IO provides a aio cancel operation to cancel

either a single specified asynchronous IO operation, or to

cancel all operations on a given file. Windows provides a

“cancellation token” abstraction; a token can be passed to an

asynchronous IO operation when it is started, and cancelling

a token cancels all asynchronous requests associated with it.

7. Conclusion

AC provides IO with performance comparable to native

callback-based asynchronous interfaces while retaining the

composable programming style of synchronous operations.

Our overall thesis is that asynchronous IO should be sup-

ported by using abstractions such as async, do..finish

and cancel to describe the sources of asynchrony within

an ordinary sequential program—rather than by the usual

technique of developing a new, alternative set of IO inter-

faces based around explicit events or callbacks. Our results

show that AC can match the performance of callback-based

interfaces.

The Barrelfish research OS, including AC, is available

from http://barrelfish.org.
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